Constructing a predicting model for JCI return using adaptive network-based Fuzzy Inference System

Endy Jeri Suswono, Dedi Budiman Hakim, Toni Bakhtiar

Abstract


The high price fluctuations in the stock market make an investment in this area relatively risky. However, higher risk levels are associated with the possibility of higher returns. Predicting models allows investors to avoid loss rate due to price fluctuations. This study uses the ANFIS (Adaptive Network-based Fuzzy Inference System) to predict the Jakarta Composite Index (JCI) return. Forecasting JCI movement is considered to be the most influential predictor, consisting of Indonesia real interest rate, real exchange rate, US real interest rate, and WTI crude oil price. The results of this study point out that the best model to predict JCI return is the ANFIS model with pi membership function. The predicting model shows that real exchange rate is the most influential factor to the JCI movement. This model is able to predict the trend direction of the JCI movement with an accuracy of 83.33 percent. This model also has better performance than the Vector Error Correction Model (VECM) based on RMSE value. The ANFIS performance is relatively satisfactory to allow investors to forecast the market direction. Thus, investors can immediately take preventive action towards any potential for turmoil in the stock market.

JEL Classification: D13, I31, J22

DOI: https://doi.org/10.26905/jkdp.v23i1.2521

 


Keywords


Adaptive Network-based Fuzzy Inference System; Jakarta Composite Index; Macroeconomics; Stock Markets; VAR/ Vector Error Correction Model

References


Ahmad, I., Hermadi, I., & Arkeman, Y. (2015). Financial feasibility study of waste cooking oil utilization for biodiesel production using ANFIS. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(3), 546–554. http://dx.doi.org/10.11591/telkomnika.v13i3.7122

Ali, H. (2014). Impact of interest rate on stock market: Evidence from Pakistani Market. IOSR Journal of Business and Management, 16(1), 64–69. https://doi.org/10.9790/487x-16176469

Amarasinghe, A. (2015). Dynamic relationship between interest rate and stock price: Empirical Evidence from Colombo Stock Exchange. International Journal of Business and Social Science, 6(4), 92–97.

Anityaloka, R. N., & Ambarwati, A. N. (2013). Peramalan saham Jakarta Islamic Index menggunakan metode ARIMA bulan Mei-Juli 2010. Statistika, 1(1), 1–5.

Atsalakis, G. S., & Valavanis, K. P. (2009a). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Systems with Applications, 36(7), 10696–10707. https://doi.org/10.1016/j.eswa.2009.02.043

Atsalakis, G. S., & Valavanis, K. P. (2009b). Surveying stock market forecasting techniques – part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941. https://doi.org/10.1016/j.eswa.2008.07.006

Boyacioglu, M. A., & Avci, D. (2010). An adaptive-network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange. Expert Systems with Applications, 37, 7908–7912. https://doi.org/10.1016/j.eswa.2010.04.045

Divianto. (2013). Analisis pengaruh tingkat inflasi, tingkat suku bunga SBI, dan nilai kurs Dollar AS (USD) terhadap Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia. Jurnal Ekonomi dan Informasi Akuntansi, 3(2), 165–198.

Fahimifar, S. M., Homayounif, M., Sabouhi, M., & Moghaddamn, A. R. (2009). Comparison of ANFIS, ANN, GARCH, and ARIMA techniques to exchange rate forecasting. Journal of Applied Sciences, 9(20), 3641–3651. https://doi.org/10.3923/jas.2009.3641.3651

Faraga, F., Chabachib, M., & Muharam, H. (2013). Analisis pengaruh harga minyak dan harga emas terhadap hubungan timbal-balik kurs dan Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI) 2000-2013. Jurnal Bisnis Strategi, 21(1), 72–94. https://doi.org/10.14710/jbs.21.1.72-94

Gumilang, R., Hidayat, R., & Endang, N. (2014). Pengaruh variabel makroekonomi, harga emas, dan harga minyak dunia terhadap Indeks Harga Saham Gabungan. Jurnal Administrasi Bisnis, 14(2), 1–9. Retrieved from: http://administrasibisnis.studentjournal.ub.ac.id/index.php/jab/article/view/586

Harsono, A., & Worokinasih, S. (2018). Pengaruh inflasi, suku bunga, dan nilai tukar rupiah terhadap Indeks Harga Saham Gabungan. Jurnal Administrasi Bisnis, 60(2), 102–110. Retrieved from: http://administrasibisnis.studentjournal.ub.ac.id/index.php/jab/article/view/2512

Hutapea, G., Margareth, E., & Tarigan, L. (2014). Analisis pengaruh kurs USD/IDR, harga minyak, dan harga emas terhadap return saham. Jurnal Ilmiah Buletin Ekonomi, 18(2), 23–33. Retrieved from: http://ejournal.uki.ac.id/index.php/beuki/article/view/300/213

Jang, J. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

Jang, J., Sun, C., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence. New York: Prentice-Hall International, Inc.

Kartika, T. (2012). Perilaku dinamis volatilitas pasar saham Indonesia. Dissertation. Post-Graduate Programme Institut Pertanian Bogor.

Kowanda, D., Binastuti, S., Pasaribu, R., & Ellim, M. (2015). Pengaruh bursa saham global, ASEAN, dan harga komoditas terhadap Indeks Harga Saham Gabungan, dan nilai tukar EUR/USD. Jurnal Akuntansi dan Manajemen, 25(2), 79–88.

Krisna, A., & Wirawati, N. (2013). Pengaruh inflasi, nilai tukar rupiah, dan suku bunga SBI pada Indek Harga Saham Gabungan di BEI. E-Jurnal Akuntansi Universitas Udayana, 3(2), 421–435.

Lilipaly, G. S., Hatidja, D., & Kekenusa, J. S. (2014). Prediksi harga saham PT. BRI menggunakan metode ARIMA (Autoregressive Integrated Moving Average). Jurnal Ilmiah Sains, 14(2), 60–67. Retrieved from: https://ejournal.unsrat.ac.id/index.php/JIS/article/view/5927

Miyanti, G., & Wiagustini, L. (2018). Pengaruh suku bunga The Fed, harga minyak, dan inflasi terhadap Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia. E-Jurnal Ekonomi dan Bisnis Universitas Udayana, 7(5), 1261–1288.

Muslim, A. (2018). Peramalan ekspor dengan hibrida ARIMA-ANFIS. Kajian Ekonomi & Keuangan, 1(2), 127–142. Retrieved from: http://www.fiskal.kemenkeu.go.id/ojs_bkf/index.php/kek/article/view/282

Patar, A., Darminto, & Saifi, M. (2014). Faktor internal dan ekternal yang mempengaruhi pergerakan harga saham. Jurnal Administrasi Bisnis, 11(1), 1–9.

Raoofi, A., Montazer-Hojjat, A. H., & Kiani, P. (2016). Comparison of several combined methods for forecasting Tehran stock exchange index. International Journal of Business Forecasting and Marketing Intelligence, 2(4), 315. https://doi.org/10.1504/ijbfmi.2016.080128

Tung, W. L., & Quek, C. (2011). Financial volatility trading using a self-organizing neural-fuzzy semantic network and option straddle-based approach. Expert Systems with Applications, 38(5), 4668–4688. https://doi.org/10.1016/j.eswa.2010.07.116

United Nations Conference on Trade and Development. (2017). World Investment Report 2017. Geneva: UNCTAD.

Yudong, Z., & Lenan, W. (2009). Stock market prediction of S&P 500 via a combination of improved BCO approach and BP neural network. Expert Systems with Applications, 36(5), 8849–8854. https://doi.org/10.1016/j.eswa.2008.11.028

Yunos, Z. M., Shamsuddin, S. M., & Sallehuddin, R. (2008). Data modeling for Kuala Lumpur Composite Index with ANFIS. Proceedings - 2nd Asia International Conference on Modelling and Simulation, 609–614. http://dx.doi.org/10.1109/AMS.2008.56


Full Text: PDF

Refbacks

  • There are currently no refbacks.





WhatsApp Image 2019-04-18 at 10.04.27



Journal of Finance and Banking

Diploma Program of Banking and Finance
Faculty of Economics and Business University of Merdeka Malang

Mailing Address:

2nd-floor Banking and  Finance Building, Terusan Raya Dieng Street No.57 Malang, 65146, East Java, Indonesia
Phone/WhatsApp: +628123321664; Fax. +62 341 580511
Email: jkpunmermlg@yahoo.com


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.