Design and Build a Research Information System at National Cyber and Crypto Polythecnic with Recommender System for Thesis Supervisor Based on Text Similarity Metric

Authors

  • Rheva Anindya Wijayanti Politeknik Siber dan Sandi Negara
  • Rayhan Ramdhany Hanaputra
  • Hermawan Setiawan
  • Girinoto
  • Ray Novita Yasa
  • Jacob Lumbantoruan
  • Muhammad Lucky Aulia Firmansyah

DOI:

https://doi.org/10.26905/jeemecs.v8i1.15219

Abstract

Politeknik Siber dan Sandi Negara (Poltek SSN) currently does not have an adequate system for managing research proposals. As a university, it must fulfill the Tri Dharma of Higher Education, one of them is research. Therefore, it is necessary to build a proposal for a management information system. Several previous studies have shown that research information systems can be built with several web frameworks. The approach of utilizing web scraping technology can integrate Google Scholar research data into the information system and recommendation services for accompanying lecturers using the Text Similarity Metric method to provide relevant results. In this study, an integrated research information system application will be built with Google Scholar, implementing the Text Similarity Metric method for the recommendation system for accompanying lecturers, and using the CodeIgniter 4 framework. The integration of the system with this lecturer recommendation service will be tested through monitoring lecturer satisfaction related to the research services provided by the system developed. The results obtained in this study are a research system that works in accordance with the business processes at Poltek SSN with the highest accuracy score on the cosine similarity algorithm of 92,95% and user satisfaction test results of 97,76%.

Downloads

Download data is not yet available.

References

[1] I. Chudzaifah, A. N. Hikmah, and A. Pramudiani, “Tridharma Perguruan Tinggi: Sinergitas Akademisi dan Masyarakat dalam Membangun Peradaban,” Al-Khidmah J. Pengabdi. dan Pendampingan Masy., vol. 1, no. 1, pp. 79–93, 2021.

[2] R. Agustino, Y. B. Widodo, A. Wiyatno, and M. I. Saputro, “Sistem Informasi Penelitian dan Pengabdian Masyarakat di Universitas Mohammad Husni Thamrin: Sistem Informasi LPPM, Sistem Database LPPM, Rancang Bangun LPPM,” J. Jaring SainTek, vol. 2, no. 1, pp. 1–12, 2020.

[3] M. Asfi and N. Fitrianingsih, “Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi,” InfoTekJar J. Nas. Inform. dan Teknol. Jar, vol. 5, no. 1, pp. 44–50, 2020.

[4] A. Rahmatulloh and R. Gunawan, “Web scraping with HTML DOM method for data collection of scientific articles from Google Scholar,” Indones. J. Inf. Syst., vol. 2, no. 2, pp. 95–104, 2020.

[5] A. F. Putri, G. Manik, F. Nabila, and N. Chamidah, “Implementasi Scraping Google Scholar Menggunakan HTML DOM Untuk Pengumpulan Data Artikel Dosen UPN Veteran Jakarta Berbasis Web,” in Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer Dan Aplikasinya, 2021, vol. 2, no. 1, pp. 668–678.

[6] H. Steck, L. Baltrunas, E. Elahi, D. Liang, Y. Raimond, and J. Basilico, “Deep learning for recommender systems: A Netflix case study,” AI Mag., vol. 42, no. 3, pp. 7–18, 2021.

[7] D. D. Prasetya, A. P. Wibawa, and T. Hirashima, “The performance of text similarity algorithms,” Int. J. Adv. Intell. Informatics, vol. 4, no. 1, pp. 63–69, 2018.

[8] A. Azhari, E. Buulolo, and N. Sialalhi, “Sistem Rekomendasi Dosen Pendamping Skripsi Berbasis Text Rank menggunakan Metode Cosine Similarity,” Pelita Inform. Inf. dan Inform., vol. 10, no. 3, pp. 119–122, 2022.

[9] A. W. Qurashi, V. Holmes, and A. P. Johnson, “Document processing: Methods for semantic text similarity analysis,” in 2020 international conference on INnovations in Intelligent SysTems and Applications (INISTA), 2020, pp. 1–6.

[10] R. Singh and S. Singh, “Text similarity measures in news articles by vector space model using NLP,” J. Inst. Eng. Ser. B, vol. 102, pp. 329–338, 2021.

[11] M. Alfano, A. E. Fard, J. A. Carter, P. Clutton, and C. Klein, “Technologically scaffolded atypical cognition: The case of YouTube’s recommender system,” Synthese, vol. 199, pp. 835–858, 2021.

[12] E. P. Primawanti and H. Ali, “Pengaruh Teknologi Informasi, Sistem Informasi Berbasis Web Dan Knowledge Management Terhadap Kinerja Karyawan (Literature Review Executive Support Sistem (Ess) for Business),” J. Ekon. Manaj. Sist. Inf., vol. 3, no. 3, pp. 267–285, 2022.

[13] N. F. Fauziah and E. Retnoningsih, “Sistem Informasi Penelitian dan Pengabdian kepada Masyarakat Berbasis Web,” Inf. Manag. Educ. Prof. J. Inf. Manag., vol. 4, no. 2, pp. 183–192, 2020.

[14] A. Musrifah, “Rancangan Sistem Informasi Penelitian Dan Pengabdian Kepada Masyarakat Di Fakultas Teknik Universitas Suyakancana,” INFOTECH J., vol. 8, no. 1, pp. 5–12, 2022.

[15] M. Ridwan, A. M. Suhar, B. Ulum, and F. Muhammad, “Pentingnya penerapan literature review pada penelitian ilmiah,” J. Masohi, vol. 2, no. 1, pp. 42–51, 2021.

Downloads

Published

2025-02-24