Design, Implementation, and Evaluation of a Robotic Arm for Centrifuge Tube Handling

Authors

DOI:

https://doi.org/10.26905/jeemecs.v8i1.15308

Keywords:

Robotic arm , Centrifuge tube , Gripper design , HMI , interface Automation

Abstract

This study presents the design and implementation of a robotic arm for transferring centrifuge tubes in laboratory environments. The robotic arm is developed to enhance safety and efficiency in handling chemical or biological samples, minimizing human error and contamination risks. The system integrates mechanical, electrical, and programming components, utilizing Dynamixel smart servos, stepper motors, and an Arduino Mega microcontroller. The robot operates in both manual and automatic modes, allowing users to select the source and destination of tube transfers via a Nextion HMI interface. Experimental results demonstrate that the robotic arm can accurately transfer tubes with diameters up to 17 mm while maintaining stability and consistency. The gripper, powered by a Tower Pro MG995 servo, ensures reliable handling without damaging the tubes. The system's modular design facilitates maintenance and scalability, making it suitable for various laboratory applications. Despite its advantages, the robotic arm has limitations, including a maximum payload of 200 grams and a total weight of 30 kg. Future improvements include integrating vision sensors and artificial intelligence for advanced functionalities such as object recognition and autonomous decision-making. This research contributes to the development of automated solutions for laboratory safety and efficiency.

Downloads

Download data is not yet available.

Author Biography

agus siswoyo, Universitas Sanata Dharma

Vokasi Department

References

[1] A. J. Abougarair, H. M. Gnan, A. Oun, and S. O. Elwarshfani, “Implementation of a brain-computer interface for robotic arm control,” in Proc. IEEE 1st Int. Maghreb Meeting Conf. Sci. Techn. Autom. Control Comput. Eng. (MI-STA), 2021, pp. 58–63. doi: 10.1109/MI-STA52233.2021.9464421.

[2] H. Afrisal, B. Setiyono, M. F. Yusuf, R. M. Suin, and O. Toirov, “Trajectory planning with obstacle avoidance of 3 DoF robotic arm for test tube handling system,” in Proc. 7th Int. Conf. Inf. Technol. Comput. Electr. Eng. (ICITACEE), 2020, pp. 41–46. doi: 10.1109/ICITACEE50144.2020.9262074.

[3] C. Girerd and T. K. Morimoto, “Design and control of a hand-held concentric tube robot for minimally invasive surgery,” IEEE Trans. Robot., vol. 37, no. 4, pp. 1022–1038, 2021. doi: 10.1109/TRO.2020.3043668.

[4] R. R. Devaraja, R. Maskeliūnas, and R. Damaševičius, “Design and evaluation of anthropomorphic robotic hand for object grasping and shape recognition,” Computers, vol. 10, no. 1, p. 1, 2021. doi: 10.3390/computers10010001.

[5] A. Florea, D. Ropella, E. Amanov, D. Herrell, and R. J. Webster, “Design of a modular, multi-arm concentric tube robot featuring roller gears,” Med. Imaging, 2022.

[6] M. Intisar, M. M. Khan, M. R. Islam, and M. Masud, “Computer vision-based robotic arm controlled using interactive GUI,” Intell. Autom. Soft Comput., 2021.

[7] M. S. Jesus, J. M. Norberto, M. R. Silva, and A. D. Petiteville, “Detection and manipulation of test tubes in the pre-analytical phase of the laboratory sector,” in Proc. IEEE 20th Int. Conf. Autom. Sci. Eng. (CASE), 2024, pp. 1672–1677. doi: 10.1109/CASE55008.2024.10023456.

[8] S. Kumar, S. Mohan, and V. Skitova, “Designing and implementing a versatile agricultural robot: A vehicle manipulator system for efficient multitasking in farming operations,” Machines, vol. 11, no. 8, p. 776, 2023. doi: 10.3390/machines11080776.

[9] D. Mourtzis, J. D. Angelopoulos, M. Papadokostakis, and N. Panopoulos, “Design for 3D printing of a robotic arm tool changer under the framework of Industry 5.0,” Procedia CIRP, 2022.

[10] J. Narayan, S. Mishra, G. Jaiswal, and S. K. Dwivedy, “Novel design and kinematic analysis of a 5-DOFs robotic arm with three-fingered gripper for physical therapy,” Mater. Today: Proc., vol. 28, pp. 2121–2132, 2020. doi: 10.1016/j.matpr.2020.02.537.

[11] O. C. Nnanna, D. E. Bolarinwa, B. O. Bello, and F. M. Oluwaseun, “An appraisal of robotic munitions for pick and place dreary tasks,” Int. J. Res. Innov. Appl. Sci., 2024.

[12] D. A. Rozas Llontop, J. Cornejo, R. Palomares, and J. A. Cornejo-Aguilar, “Mechatronics design and simulation of anthropomorphic robotic arm mounted on wheelchair for supporting patients with spastic cerebral palsy,” in Proc. IEEE Int. Conf. Eng. Veracruz (ICEV), 2020, pp. 1–5. doi: 10.1109/ICEV.2020.9373241.

[13] S. Surati, S. Hedaoo, T. Rotti, V. Ahuja, and N. S. Patel, “Pick and place robotic arm: A review paper,” 2021.

[14] L. A. Szolga and R. T. Opra, “Robotic arm for biological probe tubes handling,” in Proc. IEEE 27th Int. Symp. Design Technol. Electron. Packag. (SIITME), 2021, pp. 317–321. doi: 10.1109/SIITME53055.2021.9614637.

[15] W. Thomas, P. Wegrowski, J. Lemirick, and T. Deemyad, “Lightweight foldable robotic arm for drones,” in Proc. Intermountain Eng. Technol. Comput. (IETC), 2022, pp. 1–6. doi: 10.1109/IETC54212.2022.9801572.

[16] L. Zlokapa, Y. Luo, J. Xu, M. Foshey, K. Wu, P. Agrawal, and W. Matusik, “An integrated design pipeline for tactile sensing robotic manipulators,” in Proc. Int. Conf. Robot. Autom. (ICRA), 2022, pp. 3136–3142. doi: 10.1109/ICRA50764.2022.9812156.

Downloads

Published

2025-02-21