
Journal of Information System and Application Development
Volume 3 Number 1 Maret 2025 page 58-67

P-ISSN: 2988-5698 | E-ISSN: 2988-4721

https://jurnal.unmer.ac.id/index.php/jisad

 58

This is an open access article under the CC BY-SA license.
DOI: 10.26905/jisad.v3i1.15398

Implementation of rate limiting and Telegram bot for HTTP

GET Flood attack mitigation

Bagas Satya Dharma*, Ahmad Rofiqul Muslikh

Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Merdeka Malang,

Jl. Terusan Dieng No. 62-64, Malang, 65146, Indonesia

E-mail: *bagassatya2002@gmail.com

Abstract. Distributed Denial of Service (DDoS) attacks pose a serious cybersecurity threat by

overwhelming web servers with excessive traffic, rendering them inaccessible. One of the most

common types is HTTP Flood, where massive HTTP GET and POST requests continuously drain

server resources, leading to performance degradation or system failure. This study aims to analyze

the impact of HTTP Flood DDoS attacks on web servers and evaluate the effectiveness of mitigation

strategies using firewalls, rate limiting, and Telegram bot notifications. The research was conducted

through experimental testing on an Apache server hosted on a Digital Ocean VPS, where server

performance was measured before and after mitigation. The results indicate that a combination of

firewalls configured with iptables and rate limiting successfully reduced CPU load by over 90%,

maintaining server stability even under attack. Additionally, Telegram bot played a crucial role in

real-time attack detection and response, enabling administrators to take immediate action. In

conclusion, the applied mitigation techniques effectively reduced the impact of DDoS attacks and

enhanced server resilience.

Keywords: cyber security, denial of service, rate limiting

Submitted: 11-03-2025 | Accepted: 06-04-2025 | Published: 21-04-2025

How to Cite:

B. S. Dharma and A. R. Muslikh, ”Implementation of rate limiting and Telegram bot for HTTP GET Flood attack

mitigation,” Journal of Information System and Application Development (JISAD), vol. 3, no. 1, pp. 58-67, 2025, doi:

10.26905/jisad.v3i1.15398.

INTRODUCTION

In the digital era, information and communication technology plays a vital role in various aspects

of life. One of the most prominent forms of its utilization is through the web, which has become a

primary infrastructure for providing information, public services, and online transactions. The web

refers to a collection of interconnected digital pages within a domain, presenting various types of data

such as text, images, audio, video, and animations. All of this information can be accessed globally via

the internet [1].

As dependence on the web increases, so do the challenges related to its availability and security.

One of the main threats that can disrupt services is a Distributed Denial of Service (DDoS) attack [2]. A

DDoS attack is a type of cyberattack that floods a server with requests from multiple devices

simultaneously [3]. Unlike conventional Denial of Service (DoS) attacks, DDoS attacks are distributed

and can lead to performance degradation or even complete service outages [4], [5].

One common form of DDoS attack is the HTTP Flood, which targets the application layer [6].

HTTP Flood DDoS attacks use seemingly normal HTTP GET or POST requests to overwhelm the server,

making them difficult to detect as malicious activity. These attacks can cause the server to go down [7],

[8].

Various studies have been conducted to develop mitigation methods against DDoS attacks.

Research [9] shows that proper firewall configuration can significantly reduce the impact of DDoS

https://jurnal.unmer.ac.id/index.php/jisad
https://doi.org/10.26905/jisad.v3i1.15398
mailto:bagassatya2002@gmail.com

Journal of Information System and Application Development

Vol. 3 No. 1 (2025)

pp. 58-67

59

attacks by lowering server CPU load from nearly 100% to 25.3%. Another widely used mitigation

strategy is rate limiting, a mechanism that regulates the maximum number of requests allowed from a

single IP address within a certain time frame [10]. According to [11], the implementation of an adaptive

weight-based rate limiting mechanism in a Software Defined Network (SDN) architecture, integrated

with Graph Neural Networks (GNN) modeling, enables dynamic monitoring of host activity rates and

penalizes anomalous behavior, effectively reducing the impact of DDoS attacks on the performance of

network controllers and switches.

In addition to firewall- and rate limiting-based mitigation, a major challenge in handling DDoS

attacks is rapid detection and response. Administrators often become aware of an attack only after the

server's performance degrades or goes down, leading to delayed responses. Therefore, a real-time

threat detection system that can automatically notify administrators is needed to enable immediate

action. To address this challenge, this research proposed using a Telegram bot as an automatic

notification system in DDoS attack mitigation [12]. By integrating firewall, rate limiting [13], and a

Telegram-based notification system, this study aims to analyze the impact of DDoS attacks on web

server performance and evaluate the effectiveness of the combined mitigation techniques.

METHOD

This study employs an experimental method, which focuses primarily on testing. The

experimental method involves conducting controlled trials to observe the effects of specific variables

on system performance. This research includes simulation of HTTP GET Flood attacks and

measurement of the impact after mitigation techniques using rate limiting and Telegram bot

notifications. The stages of the research can be seen in Figure 1.

Figure 1. The Research Stages

Preparation

Web preparation is done to ensure that all testing activities take place within legal limits without

involving unlawful activities. The preparation includes utilized Digital Ocean VPS as a web server by

creating Ubuntu 24.10 x64-based droplets, as well as using the SSH protocol for secure remote access

and management of the server. Apache Web Server [14] is also installed and run on a Digital Ocean

VPS using an Apache Web Server. This allows to manage the activation and deactivation of various

additional features as needed.

Log Analysis

Log analysis is used to evaluate the effectiveness of mitigation techniques on web server, by

monitoring all types of requests, including normal traffic and DDoS attacks. The analysis process is

carried out in three stages: before the attack, during penetration testing (pen-testing), and after

mitigation is applied, to assess the server's response and the success of the mitigation. In this study, the

tools used to conduct log analysis are as follows [15].

1. tail -f /var/log/apache2/access.log

✓ tail: displays the last line of a file

✓ -f (follow): monitors files continuously and displays new lines when files are updated

✓ /var/log/apache2/access.log: a log file that keeps a record of all requests received by the

Apache server.

Mitigation &

Classification
Results

Mitigation &

Notification

Start Preparation Pen-testing Log Analysis

Implementation of rate limiting and Telegram bot for HTTP GET Flood attack mitigation
Bagas Satya Dharma, Ahmad Rofiqul Muslikh

60

2. HTOP

The htop command is an interactive system monitoring tool in Linux that provides real-time

information related to CPU usage, memory, running processes, and other system resources [16].

3. cat /var/log/apache2/access.log | toilet -l

This command is used to calculate the number of rows in the log file access.log belonging to the

Apache server. Each row in this file represents one request received by the server

✓ cat /var/log/apache2/access.log: displays the entire contents of the access.log file containing all

requests to the Apache server

✓ | (pipe): switches (pipes) the output from the first command to the next

✓ WC -L: stands for Word Count

Pen-testing

The test of attacks that will be carried out in this study uses a script that is deliberately designed

to carry out attacks. The goal is to test the resilience and response of the web server to controlled attack

scenarios. This technique allows to evaluate the effectiveness of the mitigation system that has been

implemented.

Mitigation and Classification

The mitigation that will be implemented uses a firewall [17] to filter the requests received by the

web server. The goal is to distinguish between normal requests and those indicated as attacks. A script

to set boundaries is also configured with a classification method. Next, the classification aims to compile

the rules applied to the firewall. It works by separating each request received by a web server whether

it is a legitimate request from a user or a request from an attack.

1. Normal user requests:

• Regular websites: 1-10 requests per minute; Ordinary users open multiple pages or load

images.

• Interactive application: 10-30 requests per minute; Users are actively exploring various

features of the app.

• APIs and mobile apps: 0-60 requests per minute; users generate requests for data updates

in real-time.

2. Requests with potential DDoS attacks:

• Volumetric attacks: thousands to tens of thousands of requests per second from one or

more IP addresses, aiming to overwhelm the server.

• High requests from a single IP: More than 100 requests per second from a single IP address

consistently, which could indicate an attack.

• Error flood: a large spike in error status codes (such as 404 or 500) that coincide with a

spike in requests signals a potential attack.

Mitigation and Notification

In this study, the mitigation script was equipped with the ability to send notifications to Telegram

bots. By utilizing the Telegram API, this research integrated the bot so that whenever a web server is

attacked, a notification will be received directly through the bot.

RESULTS AND DISCUSSION

Preliminary Stage

In the initial analysis stage, the researcher used a log reader tool that could provide information.

The initial purpose of this log analysis is to understand the condition of the server thoroughly before

any additional configurations or potential attacks. Figure 2 shows the results of the tail command -f

/var/log/apache2/access.log. This command allows real-time monitoring of incoming requests from

various IP addresses to the Apache server.

Journal of Information System and Application Development

Vol. 3 No. 1 (2025)

pp. 58-67

61

Figure 2. Request Logs Before Pen-testing and Mitigation

Requests from multiple IPs can be seen in Table 1. Table 1 shows script 2 and script 4 successfully

accessing the main page (status 200). Meanwhile, script 1 and script 3 fail because the resource is not

found (404 status), i.e. the main page and favicon. Requests for such scripts come from different types

of user agents, such as the curl auto tool, the Google Chrome browser on Windows, and Safari on

iPhone.

Table 1. IP Requests on the Server

No. Script Information

1. 134.209.68.251 - - [07/Jan/2025:05:27:12 +0000]

"GET http://skripsi.tech/ HTTP/1.1" 404 0 "-" "-"

IP Address: 134.209.68.251 (visitor's address)

Date & Time: 07/Jan/2025:05:27:12 +0000

HTTP method: GET (page request)

URL: http://skripsi.tech/

HTTP version: HTTP/1.1

Code Status: 404 → Page not found

Response Size: 0 bytes

User-Agent: "-" → No browser information

2. 201.220.204.201 - - [07/Jan/2025:05:27:13 +0000]

"GET/HTTP/1.1" 200 10946 "-" "curl/7.88.1"

IP Address: 201.220.204.201

Request: GET / → Accessing the main page

Code Status: 200 → Successful

Response Size: 10946 bytes

User-Agent: "curl/7.88.1" → Using the curl tool to

access the server

3. 180.148.0.182 - - [07/Jan/2025:05:36:16 +0000]

"GET/favicon.ico HTTP/1.1" 404 490

"http://skripsi.tech/" "Mozilla/5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/131.0.0.0 Safari/537.36"

IP Address: 180.148.0.182

Request: GET /favicon.ico → Request site icon

(favicon)

Code Status: 404 → Favicon not found

User-Agent: Google Chrome Browser on Windows 10

4. 172.225.72.81 - - [07/Jan/2025:05:36:37 +0000]

"GET/HTTP/1.1" 200 1521 "-" "Mozilla/5.0 (iPhone;

CPU iPhone OS 18_1_1 like Mac OS X)

AppleWebKit/605.1.15 (KHTML, like Gecko)

Version/18.1.1 Mobile/15E148 Safari/604.1"

IP Address: 172.225.72.81

Request: GET / → Accessing the main page

Code Status: 200 → Successful

User-Agent: Safari Browser on iPhone (iOS 18.1.1)

Figure 3 shows the results of the HTOP command before pen-testing. The system condition

shown in Figure 3 reflects a relatively low resource usage and stable performance. The CPU usage is

minimal at only 2.6%, indicating the server is not under heavy computational load. Memory usage is

approximately 18.6%, with 183 MB used out of 981 MB available, while no swap memory is currently

being utilized (0B/0B), suggesting efficient memory management. There are 30 active processes, 111

threads, 95 idle processes, and 1 process currently running, indicating moderate activity on the system.

Implementation of rate limiting and Telegram bot for HTTP GET Flood attack mitigation
Bagas Satya Dharma, Ahmad Rofiqul Muslikh

62

The average CPU load over the past 1, 5, and 15 minutes is 0.06, 1.32, and 0.93 respectively, which

points to a generally light workload with a brief period of higher activity. Additionally, the server has

been operational for 2 days, 12 hours, 34 minutes, and 13 seconds, demonstrating consistent uptime.

Figure 3. HTOP Command Before Pen-testing and Mitigation

Figure 4 shows the results of the tail command cat /var/log/apache2/access.log | toilet -l. This Figure

presents data on the total requests received by the server before the mitigation and pen-testing process
was carried out. The total was 52,562 requests by the tail command . This data serves as the basis for

analyzing server conditions before protection efforts are implemented.

Figure 4. Number of Requests Before Pen-testing and Mitigation

Attack Stage

Figure 5 shows the running process of pen-testing. The analysis of Figure 5 was performed using

flood.js tools from GitHub and ran them with a node command flood.js <target> <time>, with a target

http://137.184.145.88/ for 600 seconds. This tool will attack the http://137.184.145.88/ for 300 seconds (5

minutes) using the user agent "Mozilla/5.0 (windows NT 6.1; WOW64) AppleWebkit/537.46 (KHTML,

like Gecko) Chrome/54.0.2840.59 Safari/537.36". Furthermore, pen-testing log analysis was carried out

to monitor the condition of the server when this DDoS attack occurred.

Figure 5. The Process of Pen-testing

Figure 6 shows the results of the tail command -f /var/log/apache2/access.log. The access logs from

the Apache Web Server has a large number of anomalous requests. This happens when the pen-testing

process is running so that it can be concluded that this request comes from the pen-testing tool that the

researcher runs. The log entry provides detailed information about an HTTP request to the server. The

request originated from the IP address 137.184.188.88, which identifies the accessing client. The access

occurred at the timestamp [07/Jan/2025:18:18:28 +0000], indicating the exact date and time of the

request. The HTTP method used was GET, meaning the client requested to retrieve a page or resource

from the server. The referenced address was http://137.184.188.88/, showing the specific URL that was

Journal of Information System and Application Development

Vol. 3 No. 1 (2025)

pp. 58-67

63

accessed. The HTTP version used for this request was HTTP/1.1, a commonly used protocol version.

The server responded with a status code of 200, indicating that the request was successful. The response

size was 1527 bytes, representing the amount of data sent back to the client. Lastly, the User-Agent

reveals that the request was made using Chrome 70 on Mac OS X 10.12.0, providing insight into the

client's browser and operating system.

Figure 6. Real-time Logs when Pen-testing Runs

Figure 7 shows the results of the HTOP command log when the pen-testing is running. The

system condition shown in Figure 7 indicates that the server is experiencing a heavy workload. The

CPU usage is critically high at 99%, suggesting the processor is operating at near full capacity. Memory

usage is at 254 MB out of 981 MB, which, while not excessive, still reflects increased activity. No swap

memory is being utilized (0B/0B), meaning the system has not yet exceeded its physical memory limits.

However, the load average is extremely high at 42.28, far exceeding the number of CPU cores, which

signals a significant strain on the system.

Figure 7. HTOP Logs when Pen-testing Runs

An analysis of the active processes shows that all visible processes are associated with the Apache

Web Server, with most of them being run by the www-data user, which is the default user for Apache

operations. Although individual CPU usage per process remains relatively low, the sheer number of

active Apache processes contributes to the overall CPU saturation. Additionally, the repetition of the

command "/usr/sbin/apache2 -k start" confirms the presence of multiple concurrent Apache instances,

further indicating that the server is likely under an HTTP-based attack or handling an unusually high

number of simultaneous requests. Based on these conditions, the server is experiencing serious

Implementation of rate limiting and Telegram bot for HTTP GET Flood attack mitigation
Bagas Satya Dharma, Ahmad Rofiqul Muslikh

64

performance problems, namely the average load has increased drastically (from 9.18 to 42.28) and the

upward trend of load averages indicates deteriorating performance problems.

Figure 8 shows the number of requests when pen-testing runs. This figure presents a spike in

requests to the server during pen-testing. It can be seen that the surge increased drastically from 52,562

(Figure 4) to 687,941 requests in five minutes. These spikes overload the server and risk causing errors

if they last for a long time.

Figure 8. Number of Requests when Pen-testing Runs

Mitigation Stage

The application of rate limiting through iptables can be observed by running the command sudo

iptables -L-v-n. The display results of the command is presented in Figure 9.

Figure 9. IP Tables Mitigation Results

Figure 9 shows how the rules applied in the bash script (.sh) appear. The bash script is used to

automatically configure firewall rules and apply rate limiting to mitigate potential HTTP flood attacks.

In this log it is also seen that IP 134.122.113.170 and IP 134.122.122.53 are blocked just as they happened

inside the Telegram bot that is presentes in Figure 10.

Figure 10. Telegram Bot Display

Journal of Information System and Application Development

Vol. 3 No. 1 (2025)

pp. 58-67

65

Figure 10 also shows that any IP that tries to attack the script will send a notification to the bot

in real-time. Each IP will have 3 chances until it is blocked. Any IP that is blocked cannot access the

server until the blacklist is removed by typing command/unblacklist. Command/list also has the ability to

bring up any IPs that are being blacklisted.

After mitigating using rate limiting, the researcher also looked at the log information generated.

The log information recorded after the mitigation implementation is presented in Figure 11. It can be

seen that there is still an anomalous request from IP 134.209.68.251. However, this is a reasonable

request because the request will still be accepted even if it is limited by a rate limiting of 50 requests to

a burst of 200 requests. During this test, the demand was not as massive as when pen-testing was done

before the rate limiting mitigation was created.

Figure 11. Real-time Request Logs on Mitigation

The system condition presented in Figure 12 indicates a stable and low-load state at the time of

observation. The memory usage is 170 MB out of 981 MB, and no swap memory is being used (0B/0B),

suggesting efficient memory performance. The CPU load is currently low, indicating the system is

operating in a normal or stable condition. Each process is consuming a relatively small amount of

memory, further confirming light resource usage.

Figure 12. HTOP Logs when Mitigation is Executed

The load average over the last 1 minute is 0.79, which is considered normal, while the 5-minute

and 15-minute load averages are significantly higher at 34.15 and 32.01, respectively. This suggests that

the system was previously experiencing a high processing load, possibly due to an attack or intensive

workload, but has since returned to a stable state.

Implementation of rate limiting and Telegram bot for HTTP GET Flood attack mitigation
Bagas Satya Dharma, Ahmad Rofiqul Muslikh

66

Based on these statistics, we can conclude that The system was recently under heavy load, as

reflected by the high 5- and 15-minute averages. The current condition has normalized, shown by the

low 1-minute load average of 0.79. Furthermore, the total number of processes is relatively low (31),

implying that this is likely a dedicated server with specific functions rather than a general-purpose host.

Figure 13 shows the number of requests after mitigation. Although the number of requests is

very large, it should be noted that the previous number of requests is 700477 according to Figure 8. So

the number of requests received by the server when mitigation has been carried out is 700477 - 687941

= 12,536. This number is very small when compared to the number of requests before mitigation, which

amounted to 635,379 requests.

Figure 13. Number of Requests After Mitigation

With a bash script organized into iptables, this study established a rule that the requests sent

were limited to only 50 requests and bursts to 200 requests. Through the rules that have been applied,

research results have been successfully obtained with significant value. Table 2 shows the server

performance before and after mitigation, The CPU utilization before mitigation reached 100%, but after

mitigation it was reduced to below 7%. In addition, the number of requests received by the server was

also very significant, from 635,379 requests before mitigation to only 12,536 requests after mitigation.

Table 2. Server Performance Before and After Mitigation

No. Component
Before

Mitigation

After

Mitigation

1. CPU 1 100 % 4.0 %

2. CPU 2 100 % 5.9%

3. Memory 254 MB 170 Mb

4. Demand 635.379 12,536

CONCLUTION AND SUGGESTIONS

This study successfully analyzed the HTTP GET DDoS Flood attack and its mitigation

techniques. Mitigation methods using a well-configured firewall have proven effective. The right

firewall rules can improve server performance. The CPU load was successfully suppressed during the

attack. The rate limiting technique also plays an important role in limiting the number of requests to

the server. This helps prevent the server from going down. In addition, the real-time notification

system through the Telegram bot is very useful in providing early warnings when an attack occurs and

can instantly remove errors that appear in the system. The suggestion for further research is to use a

combination of several mitigation techniques, such as using CDN services as an additional option.

Additionally, it is important for web administrators to regularly update and configure security systems

to remain effective against new threats.

BIBLIOGRAPHY

[1] F. A. A. Putra, A. R. Jatmiko, R. M. A. Arief, and M. I. A. Ardiansa, “Rancang Bangun Sistem Informasi

Kepegawaian dan Inventaris Di Universitas Merdeka Malang Berbasis Web Menggunakan Framework

Codeigniter,” Jurnal RESTIKOM : Riset Teknik Informatika dan Komputer, vol. 5, no. 2, 2023, doi:

10.52005/restikom.v5i2.149.

[2] F. Hamdani, Y. B. Fitriana, and N. Oper, “Analisis Keamanan Website Terhadap Serangan DDOS

Menggunakan Metode National Institute of Standards and Technology (NIST),” KLIK: Kajian Ilmiah Informatika

dan Komputer, vol. 3, no. 6, 2023.

[3] N. Mamuriyah, S. E. Prasetyo, and A. O. Sijabat, “Rancangan Sistem Keamanan Jaringan dari serangan DDoS

Menggunakan Metode Pengujian Penetrasi,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 1, 2024,

doi: 10.47233/jteksis.v6i1.1124.

Journal of Information System and Application Development

Vol. 3 No. 1 (2025)

pp. 58-67

67

[4] E. Nofarita, “Implementasi Aplikasi Software Natural Network Mendeteksi Tingkatan Serangan DDoS Pada

Jaringan Komputer,” Elkom : Jurnal Elektronika dan Komputer, vol. 14, no. 2, 2021, doi: 10.51903/elkom.v14i2.501.

[5] M. N. Faiz, O. Somantri, and A. W. Muhammad, “Rekayasa Fitur Berbasis Machine Learning untuk

Mendeteksi Serangan DDoS,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 11, no. 3, 2022, doi:

10.22146/jnteti.v11i3.3423.

[6] S. Park, Y. Kim, H. Choi, Y. Kyung, and J. Park, “HTTP DDoS flooding attack mitigation in software-defined

networking,” IEICE Trans Inf Syst, vol. E104D, no. 9, 2021, doi: 10.1587/transinf.2021EDL8022.

[7] N. Sugianti, Y. Galuh, S. Fatia, and K. F. H. Holle, “Deteksi Serangan Distributed Denia of Services (DDOS)

Berbasis HTTP Menggunakan Metode Fuzzy Sugeno,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 4, no. 3,

2020, doi: 10.14421/jiska.2020.43-03.

[8] F. Nisa and S. Ramadona, “Sistem Pencegahan Serangan Distributed Denial Of Service Pada Jaringan SDN,”

Jurnal Sistim Informasi dan Teknologi, vol. 5, no. 3, 2023.

[9] J. Hansen and T. Sutabri, “Mendesain Cyber Security Untuk Mencegah Serangan DDoS Pada Website

Menggunakan Metode Captcha,” Digital Transformation Technology, vol. 3, no. 1, 2023.

[10] D. Firdaus, I. Sumardi, and G. Nugraha, “Peningkatan Keamanan Server GraphQL Terhadap Serangan DDOS

Dengan Tipe Batch Attack Menggunakan Metode Rate Limiting,” Cyber Security dan Forensik Digital, vol. 7, no.

2, pp. 62–68, 2024, doi: 10.14421/csecurity.2024.7.2.4718.

[11] A. El Kamel, “A GNN-Based Rate Limiting Framework for DDoS Attack Mitigation in Multi-Controller SDN,”

in Proceedings - IEEE Symposium on Computers and Communications, 2023. doi:

10.1109/ISCC58397.2023.10218204.

[12] M. T. A. Zaen, A. Tantoni, and M. Ashari, “DDoS Attack Mitigation With Intrusion Detection System (IDS)

Using Telegram Bots,” JISA(Jurnal Informatika dan Sains), vol. 4, no. 2, 2021, doi: 10.31326/jisa.v4i2.1043.

[13] I. D. Wiradyaksa, D. H. Putri, R. M. Iqbal, N. H. Astari, N. Karna, and F. Dewanta, “Design and

Implementation of Automated Web Application Firewall, Rate Limiting, and Intrusion Detection System for

Cyber Defense,” in 2024 8th International Conference on Information Technology, Information Systems and Electrical

Engineering (ICITISEE), IEEE, Aug. 2024, pp. 256–261. doi: 10.1109/ICITISEE63424.2024.10730693.

[14] Y. Arta, R. Wandri, A. Hanafiah, B. K. Pranoto, and M. R. Fadhilah, “Analisa Perbandingan Web Server Untuk

Kebutuhan Open Journal System (OJS) Menggunakan Secure Tunnel,” CogITo Smart Journal, vol. 8, no. 2, 2022,

doi: 10.31154/cogito.v8i2.407.537-548.

[15] G. Fanani and I. Riadi, “Analysis of Digital Evidence on Denial of Service (DoS) Attack Log Based,” Buletin

Ilmiah Sarjana Teknik Elektro, vol. 2, no. 2, 2020, doi: 10.12928/biste.v2i2.1065.

[16] R. I. P. Siagian, F. A. Lubis, M. A. Syuja, and D. Kiswanto, “Analisis Performa Sistem Operasi Manjaro Linux

Dalam Lingkungan Komputasi Desktop Virtual,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 1, pp.

1266–1272, 2025, doi: 10.36040/jati.v9i1.12668.

[17] B. Jaya, Y. Yuhandri, and S. Sumijan, “Peningkatan Keamanan Router Mikrotik Terhadap Serangan Denial of

Service (DoS),” Jurnal Sistim Informasi dan Teknologi, 2020, doi: 10.37034/jsisfotek.v2i4.32.

