

KAJIAN RISIKO PENDIRIAN INDUSTRI PENGOLAHAN KOPI DI **PROVINSI PAPUA**

Primahasmi Dalulia^{1*}, Digitha Oktaviani Putri², Gatot Subroto³, Kesumaning Dyah Larasati⁴, Akhmad Raditya Maulana Fajrin⁵

1,2Program Studi Teknik Industri, Universitas Merdeka Malang ³Program Studi Perencanaan Wilayah dan Kota, Institut Teknologi Nasional Malang ⁴Development Initiatives for Indonesia (DIFI), Surabaya ⁵Bappeda Provinsi Jawa Timur

*Korespondensi Penulis, E-mail: primahasmi.dalulia@unmer.ac.id

Abstrak

Kebijakan pembangunan wilayah tahun 2020-2024 juga dijabarkan dalam tujuh (7) wilayah pembangunan, salah satunya Wilayah Papua. Dalam upaya pengembangan Pulau Papua, RPJMN tahun 2020-2024 menyebutkan arahan pengembangan komoditas unggulan di Provinsi Papua berupa kopi. Hal ini juga didukung oleh kondisi produktivitas yang baik pada ketiga komoditas tersebut. Dengan melihat kondisi produktivitas komoditas kopi yang menjadi prioritas pengembangan industry, maka tujuan dari kajian ini adalah memetakan risiko yang mungkin timbul karena adanya pengembangan industri manufaktur berbasis pengolahan kopi sebagai bagian dari analisis kelayakan pengembangan industry. Metode yang digunakan dalam kajian risiko ini adalah metode House of Risk. Metode ini mengacu pada integrasi aktivitas – aktivitas dalam supply chain. Metode vang diusulkan oleh ini merupakan gabungan dari metode Failure Mode and Effect Analysis (FMEA) dan House of Quality (HOQ). Konsep FMEA diadopsi dalam mengkuantifikasi model risiko dan HOQ digunakan untuk memprioritaskan penyebab risiko (risk agents) mana yang dapat ditangani terlebih dahulu. Selain itu, konsep HOQ digunakan pula dalam memilih preventive action yang paling efektif dilakukan dalam rangka minimasi dampak terhadap risiko tersebut. Pengolahan data dengan House of Risk 1 menghasilkan penyebab risiko yang secara signifikan, dimana pada HOR 1 dihasilkan nilai ARP yang tertinggi terdapat pada risiko yang berkaitan dengan kepemilikan lahan oleh masyarakat adat Papua. Hal ini dikenal dengan hak ulayat, dimana hak ulayat sampai saat ini belum ada penyelesaian yang sistematis terdokumentasi terkait dengan prosedur pendirian industry. Hasil ini selaras dengan hasil prioritas mitigasi risiko dimana pemerintah sebagai stakeholder utama perlu membuat model kebijakan yang dapat menjembatani kepentingan investor dan masyarakat adat sebagai pemilik lahan.

Kata kunci: House of Risk, Investasi, Kopi, Mitigasi, Risiko

1. Pendahuluan

Investasi diharapkan menjadi salah satu motor penggerak perekonomian nasional yang memiliki peranan jangka panjang, sebagaimana termuat dalam [1] tahun 2020-2024. Sepanjang tahun 2020-2024, pencapaian pertumbuhan ekonomi sebesar 5,4 -6,0 persen per tahun membutuhkan investasi sebesar Rp 36.595,6 - 37.447,6 Triliun per tahun. Untuk mencapai sasaran tersebut, target realisasi penanaman modal tahun 2020-2024 adalah sekitar Rp 4.983,2 Triliun. Upaya mendorong investasi ini salah satunya dapat diwujudkan melalui revitalisasi industri pengolahan dengan tetap mendorong perkembangan sektor lain melalui transformasi pertanian, hilirisasi pertambangan, pembangunan infrastruktur yang berkelanjutan, dan transformasi sektor jasa.

Kebijakan pembangunan wilayah tahun 2020-2024 juga dijabarkan dalam tujuh (7) wilayah pembangunan, salah satunya Wilayah Papua. Arah pembangunan wilayah di luar Pulau Jawa perlu menjadi perhatian dan dapat dikembangkan untuk mendorong penyebaran investasi. Selain Proyek Prioritas Strategis atau Major Project, Provinsi Papua diarahkan untuk mendorong transformasi ekonomi berbasis wilayah adat dari hulu ke hilir. Dalam upaya pengembangan Pulau Papua, RPJMN tahun 2020-2024 (dalam Perpres No. 18 Tahun 2020 tentang RPJMN 2020-2024) menyebutkan arahan pengembangan komoditas unggulan di Provinsi Papua berupa sagu, kakao, dan kopi. Hal ini juga didukung oleh kondisi produktivitas yang baik pada ketiga komoditas

<u>Journal of Industrial View</u> <u>Volume 04, Nomor 01, 2022,</u> <u>Halaman 41 – 52</u>

tersebut. Dengan melihat kondisi produktivitas komoditas kopi yang menjadi prioritas pengembangan industry, maka tujuan dari kajian ini adalah memetakan risiko yang mungkin timbul karena adanya pengembangan industry manufaktur berbasis pengolahan kopi sebagai bagian dari analisis kelayakan pengembangan industry.

Analisis risiko diperlukan untuk memetakan risiko-risiko yang mungkin terjadi dalam setiap aktivitas dalam studi kelayakan suatu industri. Risiko yang dipetakan diharapkan menghasilkan suatu rekomendasi penanganan risiko sebagai upaya meminimalkan dampak yang ditimbulkan. Risiko merupakan fungsi dari tingkat ketidakpastian dan dampak suatu peristiwa. Untuk dapat bertahan dalam suatu lingkungan bisnis yang penuh risiko, setiap perusahaan diharapkan mempunyai sistem manajemen risiko yang baik. Sistem manajemen risiko diharapkan berguna untuk meminimalkan dampak apabila terjadi risiko pada setiap lini perusahaan. Tujuannya adalah ketika perusahaan sudah memetakan potensi-potensi risiko yang kemungkinan besar akan muncul, maka dampaknya akan ringan jika penanganan risiko atau preventive action telah dipersiapkan. Kegiatan ini dapat disebut dengan analisis risiko.

Pada kajian ini dilakukan identifikasi risiko dilakukan terhadap faktor-faktor yang berpotensi menimbulkan dampak dalam pendirian industri pengolahan kopi di Provinsi Papua. Hal ini bertujuan Ketika industri dibangun, dampak dari risiko yang muncul telah diantisipasi dengan sistematis. Antisipasi risiko pada analisis risiko dikenal dengan skema mitigasi risiko. Jenis atau kategori risiko dapat diidentifikasi menyesuaikan dengan kondisi wilayah pendirian industri.

2. Metodologi

Beberapa metode dapat digunakan untuk mengidentifikasi risiko, diantaranya adalah in-depth interview, brainstorming, kuesioner, data dan dokumen historis serta pengamatan langsung. [2]. Metode kualitatif seperti in-depth interview, brainstorming, kuesioner, data dan dokumen historis serta pengamatan langsung dapat digabungkan secara kuantitatif melalui elaborasi Delphi pada penelitian [3]. Beberapa metode dapat digunakan untuk mengidentifikasi risiko secara langsung maupun tidak langsung serta adanya kemungkinan muncul kepentingan - kepentingan tertentu pada stakeholder namun risiko sendiri merupakan kombinasi probabilitas dari suatu kejadian yang berinteraksi dengan konsekuensi secara negatif [4]. [5] Menyusun model kerja yang dikembangkan untuk melakukan pemetaan risiko serta penanganan risiko yang berdampak pada kinerja perusahaan. Manajemen resiko secara hierarki banyak dikembangkan dalam menganalisis risiko dalam rantai pasok, hal ini dikarenakan rantai pasok mencakup semua aktivitas dari industry manufaktur [6]. Analisis risiko perlu dilakukan secara sistemik karena beberapa lingkungan bersifat dinamis, sehingga risiko dapat berkembang pada beberapa aspek. Antara lain risiko - risiko tersebut dapat mempengaruhi beberapa dimensi yaitu people, environment dan economic [7]. Pengembangan dari metode analisis risiko Fault Tree Analysis yaitu Fuzzy Fault Tree Analysis sebagai salah satu metode yang digunakan dalam analisis risiko [8]. Namun. metode tersebut belum melibatkan integrasi antar proses bisnis dalam aktivitas industry. Menurut [9] manaiemen risiko dilakukan oleh perusahaan demi mewujudkan proses bisnis yang optimal sehingga memberikan manfaat bagi perusahaan dan masyarakat.

Metode yang digunakan dalam kajian risiko ini adalah metode House of Risk. Metode ini dipilih karena kerangka kerja mengacu pada integrasi aktivitas – aktivitas dalam supply chain. Metode yang diusulkan oleh [10] ini merupakan gabungan dari metode Failure Mode and Effect Analysis (FMEA) dan House of Quality (HOQ). Konsep FMEA diadopsi dalam mengkuantifikasi model risiko dan HOQ digunakan untuk memprioritaskan penyebab risiko (risk agents) mana yang dapat ditanganani terlebih dahulu. Selain itu, konsep HOQ digunakan pula dalam memilih preventive action yang paling efektif dilakukan dalam rangka minimasi dampak terhadap risiko tersebut. Berikut adalah ilustrasi dari tahapan analisis risiko dengan metode House of Risk:

Gambar 1. Tahapan analisis risiko House of Risk

2.1 Identifikasi Potensi Risiko

Identifikasi risiko dilakukan terhadap faktor-faktor yang berpotensi menimbulkan dampak dalam pendirian industri pengolahan kopi di Provinsi Papua. Jenis risiko yang diidentifikasi bersumber dari Focus Group Discussion dengan pemerintah daerah setempat. Beberapa jenis risiko yang berpotensi muncul pada pendirian industri dijelaskan secara rinci dalam ilustrasi berikut.

Gambar 2. Aspek risiko yang dianalisis

Risiko yang berkaitan dengan permintaan akan muncul ketika suatu industri akan mulai dan telah beroperasi. Risiko ini berkaitan dengan naik turunnya kapasitas produksi yang akan dirunning oleh suatu industri. Risiko permintaan dari industri pengolahan kopi di Provinsi Papua antara lain yaitu ada potensi peningkatan demand yang signifikan dan ada potensi produk olahan yang tidak terserap dengan baik. Hal ini sejalan dengan asumsi bahwa bagi penikmat kopi, munculnya produk baru dengan cita rasa yang khas akan meningkatkan demand akan produk tersebut. Namun sebaliknya apabila produk baru tersebut tidak dapat memberikan ciri khas yang unik bagi penikmat kopi, maka demand atau permintaan akan cenderung sedikit sehingga produk tersebut tidak dapat terserap pasar secara maksimal.

<u>Journal of Industrial View</u> <u>Volume 04, Nomor 01, 2022,</u> <u>Halaman 41 – 52</u>

Pada pendirian industri pengolahan kopi di Provinsi Papua, risiko yang berkaitan dengan lahan erat kaitannya dengan risiko tentang perizinan. Faktor lahan merupakan faktor yang sangat penting untuk berkembangnya suatu industri. Hal ini disebabkan karena beberapa lahan di Provinsi Papua merupakan kepemilikan adat yang dikenal dengan tanah ulayat. Untuk itu, perizinan yang berkaitan dengan lahan tersebut merupakan suatu tantangan tersendiri.

Supply chain merupakan faktor utama dalam pendirian suatu industri. Aktivitas supply chain sangat bergantung dengan infrastruktur pendukung dalam industri tersebut. Apabila infrastruktur terintegrasi dengan baik, aktivitas supply chain yaitu distribusi akan berjalan dengan lancar. Risiko-risiko yang berkaitan dengan infrastruktur umumnya berkaitan dengan integrasi simpul-simpul distribusi di wilayah setempat.

Risiko-risiko yang berkaitan dengan infrastruktur dalam pengembangan industri pengolahan kopi di Papua antara lain adalah sulitnya akses menuju Pelabuhan Depapre, kapasitas pelabuhan Depapre belum bisa memenuhi skala ekspor, dan biaya distribusi bahan baku cenderung tinggi atau mahal. Untuk itu, diperlukan peningkatan aksesibilitas menuju Pelabuhan Depapre sebagai simpul distribusi dari industri di Kawasan Industri Bonggrang. Terkait dengan infrastruktur dan kapasitas dari simpul distribusi, dibutuhkan peran pemerintah daerah maupun pemerintah pusat secara sinergi melakukan improvement terhadap infrastruktur pendukung kawasan industri ini.

Di antara risiko-risiko yang berkaitan dengan implementasi, risiko yang kemungkinan dihadapi dalam proses implementasi industri pengolahan kopi yaitu keterlibatan masyarakat masih dinilai kecil dalam pengembangan industri serta adanya potensi perubahan harga sewa lahan yang dapat mempengaruhi biaya. Kedua risiko ini berkaitan dengan hubungan antara industri dengan masyarakat setempat yang dekat dengan lokasi industri.

Risiko yang berkaitan dengan desain industri pada umumnya berkaitan dengan kondisi fisik dan non fisik industri yang akan dikembangkan. Beberapa risiko yang berpotensi timbul dalam pengembangan industri pengolahan kopi yaitu industri kurang dapat bersaing diantara industri-industri serupa, serta adanya potensi limbah karena kegiatan industri. Kedua risiko ini adalah jenis industri yang umum timbul dalam pendirian industri manufaktur khususnya. Selanjutnya, perlu adanya tindakan-tindakan antisipasi untuk meminimalkan efek dari risiko ini.

Risiko regulasi dan politik adalah risiko yang berkaitan dengan sistem pemerintahan atau kebijakan di wilayah setempat ataupun kaitannya dengan kebijakan dan pemerintahan pusat. Risiko-risiko yang berkaitan dengan regulasi dan politik yaitu perubahan kebijakan terkait industri dan terkait regulasi terhadap penggunaan lahan, yang lebih bergantung pada aturan adat atau kesepakatan masyarakat adat.

Risiko yang berkaitan dengan pembiayaan dan nilai tukar mata uang adalah risiko yang umum terjadi dalam semua sektor industri. Ketidakpastian ekonomi secara global menjadi salah satu penyebab umum terkait berubahnya skema pembiayaan atau nilai tukar mata uang.

Aktivitas operasional dalam industri secara umum tentunya berpotensi menimbulkan risiko-risiko ketika industri doing business as usual. Perusahaan yang dapat beroperasi secara efisien dapat meminimalkan dampak dari risiko-risiko pada aktivitas operasional. Beberapa risiko yang berkaitan dengan risiko operasional yaitu adanya potensi perbedaan kualitas bahan baku kopi antar wilayah penghasil kopi di Provinsi Papua. Selain itu faktor sumberdaya manusia juga berpotensi dalam menimbulkan risiko operasional, yaitu apabila ada shortage tenaga kerja atau tenaga kerja dengan kualifikasi tertentu agak sulit didapatkan.

Risiko force majeure dan lingkungan adalah risiko yang umum terjadi apabila akan ada pengembangan industri di suatu wilayah tertentu. Risiko-risiko ini berkaitan dengan keadaan alam di masing-masing wilayah.

2.2 House of Risk 1 (HOR 1)

Tahapan dalam House of Risk 1 adalah sebagai berikut:

- 1. Identifikasi risk events atau potensi risiko yang muncul pada setiap lini yang akan dianalisis.
- 2. Penilaian tingkat dampak (Severity, Si) dari peristiwa risiko tersebut (jika terjadi). Skala yang digunakan adalah 1-10, di mana 10 mewakili dampak yang sangat parah.
- 3. Identifikasi risk agents dan menilai kemungkinan kemunculan setiap Risk Agents (Aj). Skala yang digunakan adalah 1-10 di mana 1 berarti hampir tidak pernah terjadi dan nilai 10 berarti hampir pasti akan terjadi.
- 4. Pengembangan relationship matrix, yaitu hubungan antara masing-masing agen risiko dan setiap peristiwa risiko, Rij {0, 1, 3, 9} di mana 0 mewakili tidak ada korelasi dan 1, 3, dan 9 masing-masing mewakili korelasi rendah, korelasi sedang, dan korelasi tinggi.
- 5. Menghitung Aggregate Risk Potential of Agent j (ARPj) yang ditentukan sebagai hasil dari kemungkinan terjadinya risk agents j dan dampak agregatnya yang ditimbulkan oleh risk events yang disebabkan oleh risk agents j.
- 6. Memberikan peringkat risk agents sesuai dengan urutan Aggregate Risk Potential of Agent j (ARPj) dari nilai besar ke nilai rendah.
- 7. Formula untuk menentukan ARPj adalah:

$$ARPj = Oj \sum S_i R_{ij}$$
 Pers. 1

2.3 House of Risk 2 (HOR 2)

House of Risk 2 berfokus pada usulan mitigasi risiko dari risk agents yang menjadi prioritas pada House of Risk 1. Langkah-langkah pengolahan House of Risk 2 adalah sebagai berikut:

- 1. Membuat usulan preventive actions (PAk) dari risk agents yang telah dipilih pada House of Risk 1.
- 2. Membuat matriks House of Risk 2 terdiri dari daftar risk agent yang akan diselesaikan (Aj), preventive action yang akan diusulkan (PAk), dan nilai ARP dari masing-masing risk agents.
- 3. Pengolahan HOR 2 dilakukan dengan menghitung TEk, identifikasi tingkat kesulitan (Dk) dan rasio TEk dan Dk (Effectiveness to Difficulty ratio, ETD). Penentuan prioritas mitigasi risiko dilakukan dengan perhitungan nilai Total Effectiveness (TEk) untuk setiap usulan preventive action. Nilai TEk didapatkan dari penjumlahan perkalian nilai ARP masing-masing risk agents dan tingkat efektivitasnya pada relationship matrix. Perhitungan nilai TEk menggunakan formula sebagai berikut.

$$TEk = \sum ARPjE_{jk} \ \forall k$$
 Pers. 2

4. Melakukan perangkingan terhadap ETD sehingga ETD dengan nilai tertinggi adalah mitigasi yang prioritas dilakukan.

3. Pengolahan Data dan Analisis

Dalam menentukan mitigasi risiko, terlebih dahulu harus ditentukan risk events dan risk agents yang mungkin muncul dalam pendirian industri pengolahan kopi di Provinsi Papua. Risk events (Ei) adalah potensi risiko yang mungkin terjadi. Sedangkan risk agents (Ai) adalah penyebab terjadinya risiko. Metode yang digunakan dalam analisis risiko adalah metode House of Risk yang terdiri dari 2 bagian. House of Risk 1 adalah identifikasi penyebab risiko prioritas untuk diselesaikan. Sedangkan House of Risk 2 adalah penilaian preventive actions atau mitigasi yang dilakukan berdasarkan kemampuan resource.

3.1 Identifikasi Risk Event dan Severity

Risk events diidentifikasi berdasarkan major processes atau proses/lini utama dalam pendirian industri pengolahan kopi di Provinsi Papua. Major processes tersebut antara lain:

- 1. Risiko Permintaan (Demand);
- 2. Risiko Lahan dan Perizinan;
- 3. Infrastruktur Pendukung;
- 4. Implementasi Industri;
- 5. Desain Industri;
- 6. Regulasi dan Politik;
- 7. Pembiayaan dan Nilai Tukar Mata Uang;
- 8. Force Majeure dan Lingkungan; dan
- 9. Operasional Industri.

Identifikasi risk event dilakukan dengan kegiatan *Focus Group Discussion* (FGD) dengan *stakeholder* daerah yaitu pada kegiatan kunjungan lapangan pada tanggal 23 Agustus 2021 sampai dengan 26 Agustus 2021. Hasil dari kunjungan lapangan kemudian dielaborasi menjadi daftar kemungkinan kejadian risiko atau risk event yang dilambangkan dengan notasi Ei. Dari masing-masing *risk events* tersebut, kemudian diidentifikasi nilai severity atau dampak keparahan untuk masing-masing risk event apabila risiko itu terjadi. Identifikasi nilai severity adalah sebagai berikut:

Tabel 1. Identifikasi Risk Events dan Nilai Severity

Risk Events	Code	Severity (Sj)
Ada potensi peningkatan <i>demand</i> yang signifikan	E1	7
Ada potensi produk olahan yang tidak terserap dengan	E2	7
baik		
Lahan industri tidak dapat dibeli atau menjadi hak milik	E3	7
Adanya potensi pengambil alihan hak lahan industri oleh	E4	5
masyarakat		
Akses menuju Pelabuhan Depapre sulit	E5	5
Kapasitas Pelabuhan Depapre belum bisa memenuhi	E6	7
skala ekspor		
Biaya distribusi bahan baku mahal	E7	6
Keterlibatan masyarakat masih dinilai kecil dalam	E8	4
pengembangan industri		
Potensi perubahan harga sewa lahan yang dapat	E9	3
mempengaruhi biaya		
Industri kurang dapat bersaing	E10	5
Potensi limbah karena kegiatan industri	E11	5
Perubahan kebijakan terkait industri	E12	5
Regulasi terhadap penggunaan lahan, lebih bergantung	E13	7
pada aturan adat atau kesepakatan masyarakat adat		
Perubahan nilai tukar mata uang yang signifikan	E14	2
Potensi tingginya inflasi dan perbedaan harga yang	E15	3
signifikan sehingga mempengaruhi seluruh biaya		
Potensi kebencanaan di Papua (gempa bumi, banjir dan	E16	4
angin puting beliung)		
Perubahan ekologis di sekitar wilayah industri (contoh:	E17	4
kualitas udara, kualitas air)		
Perbedaan kualitas bahan baku	E18	5
Shortage tenaga kerja	E19	5

3.2 Identifikasi Risk Agent

Identifikasi risk agents dilakukan dengan analisis terhadap risk events, mengenai apa saja kemungkinan penyebab risiko tersebut terjadi. Identifikasi risk agents dilakukan dengan penilaian *likelihood of occurrence*. Likelihood of occurrence adalah kemungkinan terjadinya penyebab risiko. Hasil identifikasi risk agents dan likelihood of occurrence disajikan dalam tabel berikut.

Tabel 2. Identifikasi Risk Agent dan Occurrence

raber 2. Identilikasi Risk Agent dan Occ	arrerice	Likalihaad of
Risk Agent	Code	Likelihood of Occurrence
Produk kopi Papua Wamena <i>specialty roasted bean</i> dan	A1	5
kopi bubuk Papua belum terlalu dikenal oleh masyarakat		
dan penggemar kopi serta pasar ekspor		
Masyarakat tidak mau menjual lahan milik mereka	A2	8
Masyarakat tidak lagi menginginkan adanya industri di lahan milik mereka	A3	2
Pengembangan infrastruktur di sekitar pelabuhan belum maksimal	A4	4
Membutuhkan waktu lama untuk meningkatkan kapasitas Pelabuhan Depapre	A5	5
Infrastruktur di wilayah Papua secara umum belum berkembang secara maksimal	A6	5
Pemberdayaan masyarakat lokal yang belum dapat dilakukan secara menyeluruh di dalam industri	A7	6
Masyarakat adat punya pengaruh besar terhadap kepemilikan lahan		7
Perubahan iklim industri dan pola permintaan pasar	A9	4
Seluruh kegiatan operasi industri pada sektor apapun memiliki dampak lingkungan dan potensi limbah	A10	4
Adanya pergantian pemerintahan	A11	2
Dampak pandemi terhadap perekonomian secara global	A12	4
Seluruh wilayah Indonesia memiliki potensi kebencanaan	A13	4
Perubahan iklim	A14	3
Bahan baku kopi diambil dari beberapa wilayah yang berbeda di Provinsi Papua	A15	5

3.3 Pengolahan House of Risk (HOR) 1

Pengolahan House of Risk dilakukan untuk mengidentifikasi risk agent yang paling dominan dengan nilai *Aggregate Risk Potential* (ARP). Nilai ARP didapatkan dengan penyusunan relationship matrix. Relationship matrix adalah matriks hubungan antara risk events dan risk agents. Hubungan ini diindikasikan dengan skala 0, 1, 3 dan 9. Skala 0 menunjukkan tidak adanya hubungan antara risk events dan risk agents sedangkan 9 mengindikasikan hubungan yang sangat kuat antara risk events dan risk agents. Dari relationship matrix dilakukan perhitungan ARP dengan menggunakan Persamaan 1. Nilai *Aggregate Risk Potential* (ARP) digunakan sebagai acuan risiko mana yang signifikan berpengaruh terhadap model risiko yang dibuat. Perhitungan ARP menggunakan nilai Severity (Si), Likelihood of Occurrence (Oj) serta nilai hubungan antara risk events dan risk agents, yang didapatkan dari relationship matrix. Nilai ARP untuk setiap risk agents disajikan sebagai berikut:

Tabel 3. Hasil Perhitungan ARP

Risk Agent	Code	ARP
Masyarakat adat punya pengaruh besar terhadap	A8	1099
kepemilikan lahan		
Produk kopi Papua Wamena <i>specialty roasted bean</i> dan	A1	705
kopi bubuk Papua belum terlalu dikenal oleh masyarakat		
dan penggemar kopi serta pasar ekspor		
Masyarakat tidak mau menjual lahan milik mereka	A2	600
Pemberdayaan masyarakat lokal yang belum dapat	A7	558
dilakukan secara menyeluruh di dalam industri		
Membutuhkan waktu lama untuk meningkatkan kapasitas	A5	445
Pelabuhan Depapre		
Perubahan iklim industri dan pola permintaan pasar	A9	408
Pengembangan infrastruktur di sekitar pelabuhan belum	A4	300
maksimal		
Infrastruktur di wilayah Papua secara umum belum	A6	295
berkembang secara maksimal		
Dampak pandemi terhadap perekonomian secara global	A12	292
Perubahan iklim	A14	231
Bahan baku kopi diambil dari beberapa wilayah yang	A15	225
berbeda di Provinsi Papua		
Seluruh kegiatan operasi industri pada sektor apapun	A10	180
memiliki dampak lingkungan dan potensi limbah		
Masyarakat tidak lagi menginginkan adanya industri di	A3	164
lahan milik mereka		
Seluruh wilayah Indonesia memiliki potensi kebencanaan	A13	160
Adanya pergantian pemerintahan	A11	150

Nilai ARP mengindikasikan seberapa besar pengaruh risk agent terhadap kejadian risiko yang akan diusulkan kegiatan mitigasi risiko dalam House of Risk (HOR) 2. Dari tabel di atas, penyebab risiko dengan dampak terbesar adalah risiko – risiko yang terkait dengan kepemilikan lahan oleh masyarakat adat. Hal ini sesuai dengan kondisi di Papua secara umum bahwa masyarakat memiliki peranan yang cukup besar oleh kepemilikan lahan, dalam hal ini tercakup dalam hak ulayat. Selain itu, kopi Papua belum terlalu popular atau dikenal secara luas sehingga perlu adanya treatment khusus dalam pengembangannya sebagai industri berskala produksi masal.

3.4 Identifikasi Preventive Actions (PAk)

Preventive actions (PAk) diidentifikasi berdasarkan prioritas risiko yang telah didapatkan pada House of Risk 1. Daftar preventive actions atau mitigasi risiko yang diusulkan disajikan sebagai berikut :

Tabel 4. Identifikasi Usulan Preventive Actions

Usulan Mitigasi (Preventive Actions)	Code
Perlunya tim <i>marketing</i> yang kuat dan solid serta analisis <i>branding</i>	PAk1
yang <i>robust</i> sebelum produk diluncurkan ke pasar	
Pemerintah daerah membuat kebijakan dan model kerjasama antara	PAk2
masyarakat adat dan industri, serta masyarakat adat dan pemerintah	
Perlunya sinergi dari pemerintah daerah (Provinsi dan Kabupaten)	PAk3
serta pemerintah pusat dalam mengembangkan kapasitas	
pelabuhan dan infrastruktur lain	

Usulan Mitigasi (Preventive Actions)	Code
Pada fase pra operasi, pengusaha sudah aktif membuat program	PAk4
atau rencana keterlibatan masyarakat dalam industri	
Penerapan flexible manufacturing supaya dapat lebih cepat	PAk5
merespon perubahan pasar	
Menerapkan <i>green manufacturing</i> dalam operasi industri	PAk6
Perlunya standarisasi kebijakan terkait industri	PAk7
Pengusaha dapat menerapkan strategi <i>manufacturing</i> yang efisien,	PAk8
contohnya dengan <i>lean manufacturing</i>	
Pembuatan bangunan tahan bencana dan infrastruktur mitigasi	PAk9
bencana	
Membuat SOP penanganan kebencanaan dan emergency response	PAk10
system skala industri	
Pemberdayaan petani oleh industri untuk mengirimkan kopi dengan	PAk11
kualitas sesuai dengan standar	

3.5 Pengolahan House of Risk (HOR) 2

Relationship matrix pada House of Risk 2 adalah matriks hubungan antara risk agents sasaran dan preventive actions. Hubungan ini dinilai berdasarkan tingkat keefektifan masing-masing risk agent terhadap preventive action yang ditawarkan. Hubungan ini diindikasikan dengan skala 0, 1, 3 dan 9. Skala 0 menunjukkan tidak adanya hubungan antara masing-masing risk agent terhadap preventive action yang ditawarkan sedangkan 9 mengindikasikan hubungan yang sangat kuat antara masing-masing risk agent terhadap preventive action yang ditawarkan. Relationship matrix pada House of Risk 2 berisi daftar risk agents yang diprioritaskan sesuai dengan hasil House of Risk 1 beserta nilai ARP nya. Pada bagian atas matriks, terdapat preventive action atau mitigasi yang diusulkan. Bagian tengah merupakan nilai hubungan antara risk agents dan preventive actionsnya.

Penentuan prioritas mitigasi risiko dilakukan dengan perhitungan nilai Total Effectiveness (TEk) untuk setiap usulan preventive action. Nilai TEk didapatkan dari penjumlahan perkalian nilai ARP masing-masing risk agents dan tingkat efektivitasnya pada relationship matrix dengan menggunakan Persamaan 2. Hasil perhitungan TEk dari masing-masing usulan mitigasi adalah sebagai berikut :

Tabel 5. Hasil Perhitungan TEk

Usulan Mitigasi	Code	TEk
Perlunya tim <i>marketing</i> yang kuat dan solid serta analisis branding yang robust sebelum produk diluncurkan ke pasar	PA1	7569
Pemerintah daerah membuat kebijakan dan model kerjasama antara masyarakat adat dan industri, serta masyarakat adat dan pemerintah	PA2	13936
Perlunya sinergi dari pemerintah daerah (Provinsi dan Kabupaten) serta pemerintah pusat dalam mengembangkan kapasitas pelabuhan dan infrastruktur lain	PA3	9360
Pada fase pra operasi, pengusaha sudah aktif membuat program atau rencana keterlibatan masyarakat dalam industri	PA4	14211
Penerapan <i>flexible manufacturing</i> supaya dapat lebih cepat merespon perubahan pasar	PA5	5253
Menerapkan green manufacturing dalam operasi industri	PA6	1620
Perlunya standarisasi kebijakan terkait industri	PA7	1657

Usulan Mitigasi	Code	TEk
Pengusaha dapat menerapkan strategi manufacturing yang	PA8	1528
efisien, contohnya dengan <i>lean manufacturing</i>		
Pembuatan bangunan tahan bencana dan infrastruktur	PA9	540
mitigasi bencana		
Membuat SOP penanganan kebencanaan dan <i>emergency</i>	PA10	2079
response system skala industri		
Pemberdayaan petani oleh industri untuk mengirimkan kopi	PA11	7701
dengan kualitas sesuai dengan standar		

3.6 Penentuan Prioritas Mitigasi Risiko

Setelah dilakukan perhitungan TEk dari masing-masing preventive action, kemudian dilakukan perhitungan terhadap *Degree of Difficulty (Dk)*, Effectiveness to Difficulty Ratio (ETD) serta *Degree of difficulty* adalah tingkat kesulitan dalam penerapan masing-masing usulan mitigasi (PAk) yang didapatkan dengan skala likert. Pada contoh Dk = 4 mengindikasikan nilai kesulitan yang sedang (moderate). Effectiveness to difficulty ratio adalah rasio atau pembagian antara TEk dan Dk. Rank of priority adalah urutan nilai ETD dari yang terbesar ke yang terkecil, yang menunjukkan prioritas penerapan preventive action (mitigasi risiko). Berikut adalah hasil dari usulan prioritas dari mitigasi risiko dari hasil House of Risk 2.

Tabel 6. Prioritas Mitigasi Risiko

Tabel 6. Filonias Willigasi Nisiko						
Usulan Mitigasi	Code	TEk	Dk	ETD	Rank of Priority	
Pemerintah daerah membuat kebijakan dan model kerjasama antara masyarakat adat dan industri, serta masyarakat adat dan pemerintah	PA2	13936	4	3484	1	
Perlunya sinergi dari pemerintah daerah (Provinsi dan Kabupaten) serta pemerintah pusat dalam mengembangkan kapasitas pelabuhan dan infrastruktur lain	PA3	9360	3	3120	2	
Pada fase pra operasi, pengusaha sudah aktif membuat program atau rencana keterlibatan masyarakat dalam industri	PA4	14211	5	2842	3	
Pemberdayaan petani oleh industri untuk mengirimkan kopi dengan kualitas sesuai dengan standar	PA11	7701	4	1925	4	
Perlunya tim <i>marketing</i> yang kuat dan solid serta analisis <i>branding</i> yang <i>robust</i> sebelum produk diluncurkan ke pasar	PA1	7569	4	1892	5	
Penerapan <i>flexible manufacturing</i> supaya dapat lebih cepat merespon perubahan pasar	PA5	5253	5	1051	6	
Membuat SOP penanganan kebencanaan dan <i>emergency</i> <i>response system</i> skala industri	PA10	2079	3	693	7	
Perlunya standarisasi kebijakan terkait industri	PA7	1657	3	552	8	

Usulan Mitigasi	Code	TEk	Dk	ETD	Rank of Priority
Menerapkan <i>green manufacturing</i> dalam operasi industri	PA6	1620	3	540	9
Pengusaha dapat menerapkan strategi manufacturing yang efisien, contohnya dengan lean manufacturing	PA8	1528	3	509	10
Pembuatan bangunan tahan bencana dan infrastruktur mitigasi bencana	PA9	540	3	180	11

4. Kesimpulan

Pengolahan data dengan House of Risk 1 menghasilkan penyebab – penyebab risiko yang secara signifikan, dimana pada HOR 1 dihasilkan nilai ARP yang tertinggi terdapat pada risiko yang berkaitan dengan kepemilikan lahan oleh masyarakat adat Papua. Hal ini dikenal dengan hak ulayat, dimana hak ulayat sampai saat ini belum ada penyelesaian yang sistematis terdokumentasi terkait dengan prosedur pendirian industry. Hasil ini selaras dengan hasil prioritas mitigasi risiko dimana pemerintah sebagai stakeholder utama perlu membuat model kebijakan yang dapat menjembatani kepentingan investor dan masyarakat adat sebagai pemilik lahan. Usulan – usulan mitigasi tersebut nantinya akan dijadikan bahan pertimbangan pada dokumen analisis kelayakan pendirian usaha. Dokumen tersebut akan disosialisasikan pada pemerintah daerah dan investor yang tertarik berinvestasi pada pengembangan industry pengolahan kopi di Papua.

5. Daftar Pustaka

- [1] Rencana Pembangunan Jangka Menengah Nasional. (2020). Badan Perencanaan Pembangunan Nasional.
- [2] Widiasih, et al. (2015). Managing Risk of Lean Manufacturing Concept Implementation Approaching by Delphi and HOR. The 1st International Seminar on Science and Technology. Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
- [3] Dalulia, P., & Pambudi, E. (2019). Penjaringan Kriteria dalam Desain Ulang Instrumen Pengukuran Kepuasan Pelayanan Perusahaan Distribusi Minyak Milik Negara. *Journal of Industrial View, Vol. 1, No. 1, Page 11-18.*
- [4] Parviainen, et al. (2021). Implementing Bayesian Networks for ISO 31000:2018-based maritime oil spill risk management: State of the art, implementations benefits and challenges, and future research directions. *Journal of Environmental Management*, 278.
- [5] Singh, Nitya P., & Hong, Paul C. (2020). Impact of Strategic and Operational Risk Management Practices on Firm Performance: An Empirical Investigation. *European Management Journal 38, Page 723 735.*
- [6] Munir, et al. (2020). Supply Chain Risk Management and Operational Performance: The Enabling Role of Supply Chain Integration. *International Journal of Production Economics Volume 227.*
- [7] Ozturkoglu, et al (2019). A Sustainable and Preventive Risk Management Model for Ship Recycling Industry. *Journal of Cleaner Production Volume 238*.
- [8] Kuzu, et al. (2019). Application of Fuzzy Fault Tree Analysis (FFTA) to Maritime Industry: A Risk Analysing of Ship Mooring Operation. Ocean Engineering Journal Volume 179.
- [9] Rosih, et al. (2015). Analisis Risiko Operasional Pada Departemen Logistik Dengan Menggunakan Metode FMEA. *Jurnal Rekayasa dan Manajemen Sistem Industri Vol.3 No 3*. Teknik Industri Universitas Brawijaya.

Journal of Industrial View Volume 04, Nomor 01, 2022, Halaman 41 – 52

[10] Pujawan dan Geraldin, Laudine H. (2009). House of Risk: A Model for Proactive Supply Chain Risk Management, *Business Process Management Journal*, Volume 15 Number 6 pp. 953-967.