Constructing a predicting model for JCI return using adaptive network-based Fuzzy Inference System

Endy Jeri Suswono, Dedi Budiman Hakim, Toni Bakhtiar


The high price fluctuations in the stock market make an investment in this area relatively risky. However, higher risk levels are associated with the possibility of higher returns. Predicting models allows investors to avoid loss rate due to price fluctuations. This study uses the ANFIS (Adaptive Network-based Fuzzy Inference System) to predict the Jakarta Composite Index (JCI) return. Forecasting JCI movement is considered to be the most influential predictor, consisting of Indonesia real interest rate, real exchange rate, US real interest rate, and WTI crude oil price. The results of this study point out that the best model to predict JCI return is the ANFIS model with pi membership function. The predicting model shows that real exchange rate is the most influential factor to the JCI movement. This model is able to predict the trend direction of the JCI movement with an accuracy of 83.33 percent. This model also has better performance than the Vector Error Correction Model (VECM) based on RMSE value. The ANFIS performance is relatively satisfactory to allow investors to forecast the market direction. Thus, investors can immediately take preventive action towards any potential for turmoil in the stock market.

JEL Classification: D13, I31, J22




Adaptive Network-based Fuzzy Inference System; Jakarta Composite Index; Macroeconomics; Stock Markets; VAR/ Vector Error Correction Model

Full Text:



Ahmad, I., Hermadi, I., & Arkeman, Y. (2015). Financial feasibility study of waste cooking oil utilization for biodiesel production using ANFIS. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(3), 546–554.

Ali, H. (2014). Impact of interest rate on stock market: Evidence from Pakistani Market. IOSR Journal of Business and Management, 16(1), 64–69.

Amarasinghe, A. (2015). Dynamic relationship between interest rate and stock price: Empirical Evidence from Colombo Stock Exchange. International Journal of Business and Social Science, 6(4), 92–97.

Anityaloka, R. N., & Ambarwati, A. N. (2013). Peramalan saham Jakarta Islamic Index menggunakan metode ARIMA bulan Mei-Juli 2010. Statistika, 1(1), 1–5.

Atsalakis, G. S., & Valavanis, K. P. (2009a). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Systems with Applications, 36(7), 10696–10707.

Atsalakis, G. S., & Valavanis, K. P. (2009b). Surveying stock market forecasting techniques – part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941.

Boyacioglu, M. A., & Avci, D. (2010). An adaptive-network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange. Expert Systems with Applications, 37, 7908–7912.

Divianto. (2013). Analisis pengaruh tingkat inflasi, tingkat suku bunga SBI, dan nilai kurs Dollar AS (USD) terhadap Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia. Jurnal Ekonomi dan Informasi Akuntansi, 3(2), 165–198.

Fahimifar, S. M., Homayounif, M., Sabouhi, M., & Moghaddamn, A. R. (2009). Comparison of ANFIS, ANN, GARCH, and ARIMA techniques to exchange rate forecasting. Journal of Applied Sciences, 9(20), 3641–3651.

Faraga, F., Chabachib, M., & Muharam, H. (2013). Analisis pengaruh harga minyak dan harga emas terhadap hubungan timbal-balik kurs dan Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI) 2000-2013. Jurnal Bisnis Strategi, 21(1), 72–94.

Gumilang, R., Hidayat, R., & Endang, N. (2014). Pengaruh variabel makroekonomi, harga emas, dan harga minyak dunia terhadap Indeks Harga Saham Gabungan. Jurnal Administrasi Bisnis, 14(2), 1–9. Retrieved from:

Harsono, A., & Worokinasih, S. (2018). Pengaruh inflasi, suku bunga, dan nilai tukar rupiah terhadap Indeks Harga Saham Gabungan. Jurnal Administrasi Bisnis, 60(2), 102–110. Retrieved from:

Hutapea, G., Margareth, E., & Tarigan, L. (2014). Analisis pengaruh kurs USD/IDR, harga minyak, dan harga emas terhadap return saham. Jurnal Ilmiah Buletin Ekonomi, 18(2), 23–33. Retrieved from:

Jang, J. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

Jang, J., Sun, C., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence. New York: Prentice-Hall International, Inc.

Kartika, T. (2012). Perilaku dinamis volatilitas pasar saham Indonesia. Dissertation. Post-Graduate Programme Institut Pertanian Bogor.

Kowanda, D., Binastuti, S., Pasaribu, R., & Ellim, M. (2015). Pengaruh bursa saham global, ASEAN, dan harga komoditas terhadap Indeks Harga Saham Gabungan, dan nilai tukar EUR/USD. Jurnal Akuntansi dan Manajemen, 25(2), 79–88.

Krisna, A., & Wirawati, N. (2013). Pengaruh inflasi, nilai tukar rupiah, dan suku bunga SBI pada Indek Harga Saham Gabungan di BEI. E-Jurnal Akuntansi Universitas Udayana, 3(2), 421–435.

Lilipaly, G. S., Hatidja, D., & Kekenusa, J. S. (2014). Prediksi harga saham PT. BRI menggunakan metode ARIMA (Autoregressive Integrated Moving Average). Jurnal Ilmiah Sains, 14(2), 60–67. Retrieved from:

Miyanti, G., & Wiagustini, L. (2018). Pengaruh suku bunga The Fed, harga minyak, dan inflasi terhadap Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia. E-Jurnal Ekonomi dan Bisnis Universitas Udayana, 7(5), 1261–1288.

Muslim, A. (2018). Peramalan ekspor dengan hibrida ARIMA-ANFIS. Kajian Ekonomi & Keuangan, 1(2), 127–142. Retrieved from:

Patar, A., Darminto, & Saifi, M. (2014). Faktor internal dan ekternal yang mempengaruhi pergerakan harga saham. Jurnal Administrasi Bisnis, 11(1), 1–9.

Raoofi, A., Montazer-Hojjat, A. H., & Kiani, P. (2016). Comparison of several combined methods for forecasting Tehran stock exchange index. International Journal of Business Forecasting and Marketing Intelligence, 2(4), 315.

Tung, W. L., & Quek, C. (2011). Financial volatility trading using a self-organizing neural-fuzzy semantic network and option straddle-based approach. Expert Systems with Applications, 38(5), 4668–4688.

United Nations Conference on Trade and Development. (2017). World Investment Report 2017. Geneva: UNCTAD.

Yudong, Z., & Lenan, W. (2009). Stock market prediction of S&P 500 via a combination of improved BCO approach and BP neural network. Expert Systems with Applications, 36(5), 8849–8854.

Yunos, Z. M., Shamsuddin, S. M., & Sallehuddin, R. (2008). Data modeling for Kuala Lumpur Composite Index with ANFIS. Proceedings - 2nd Asia International Conference on Modelling and Simulation, 609–614.



  • There are currently no refbacks.

Jurnal Keuangan dan Perbankan (Journal of Finance and Banking)

Diploma Program of Banking and Finance, Faculty of Economics and Business, University of Merdeka Malang

Published by University of Merdeka Malang

Mailing Address:
2nd floor Finance and Banking Building, Jl. Terusan Raya Dieng No. 57 Malang, East Java, Indonesia
Phone: +62 813-3180-1534

This work is licensed under a Creative
Commons Attribution-ShareAlike 4.0