THE APPLICATION OF RISK BASED BANK RATING ON BANKRUPTCY PREDICTION OF BANKS IN INDONESIA

Authors

  • Evi Sistiyarini Bachelor of Manajement Department, STIE Perbanas Surabaya
  • Sudjarno Eko Supriyono Department of Diploma 3 Finance and Banking STIE Perbanas Surabaya

DOI:

https://doi.org/10.26905/jkdp.v21i2.564

Keywords:

bank bankcrupty, logistic regression, Risk Based Bank Rating (RBBR)

Abstract

The increase of banking products and services which is more complex will increase the risk to the banks. Therefore, to anticipate the rise of financial difficulties in a bank, the early warning system. This study aimed to find the influence RBBR (Risk Based Bank Rating) ratio’s to predict the bankruptcy of conventional Banks in Indonesia. The ratio of RBBR consisted of risk profile, Good Corporate Governance, profitability, and capital. Independent variables used were NPL, PDN, LDR, GCG, ROA and NIM, and CAR. The dependent variable was bank bankruptcy using a dummy variable. The population of this study was all of the conventional banks in Indonesia. The data was a secondary data taken form financial report of conventional bank 2011-2015. Technical sampling used was a purposive sampling method with some criteria. The analysis of this study used logistic regression. The result of the study showed that NPL, PDN, LDR, GCG, ROA and NIM, and CAR had no significant influence on the bankruptcy of the bank.

Author Biographies

Evi Sistiyarini, Bachelor of Manajement Department, STIE Perbanas Surabaya

-

Sudjarno Eko Supriyono, Department of Diploma 3 Finance and Banking STIE Perbanas Surabaya

-

References

Baklouti, N., Gautier, F & Affes, H. 2016. Corporate Governance and Financial Distress of European Commercial Banks. Journal of Business Studies Quarterly, 7(3): 75-96.

Bussiere, M. & Fratzscher, M. 2006. Towards A New Early Warning System of Financial Crisis, Journal of International Money and Finance, 25(1): 953-973.

Ghozali. 2006. Aplikasi Analisis Multivariate dengan Program SPSS. Yogyakarta: Badan Penerbit Universitas Diponegoro.

Haryetti. 2010. Analisis Financial Distress untuk Memprediksi Risiko Kebangkrutan Perusahan (Studi pada Industri Perbankan di BEI). Jurnal Ekonomi, 18(2).

Hidayati, L.N. 2015. Pengaruh Kecukupan Modal (CAR), Pengelolaan Kredit (NPL) dan Likuiditas Bank (LDR) terhadap Probabilitas Kebangkrutan Bank (Studi pada Bank Umum Swasta devisa yang Tercatat di BEI Tahun 2009-2013). Jurnal Ilmu Manajemen, 12(1): 38-50.

Hilmy, H., Mohd, S & Fahami, S. 2013. Factor Affecting Bankruptcy: The Case Of Malaysia. International Journal of Undergraduates Studies, 2(3): 4-8.

Kusmayadi, D. 2012. Determinasi Audit Internal dalam Mewujudkan Good Corporate Governance serta Implikasinya pada Kinerja Bank. Jurnal Keuangan dan Perbankan, 16(1): 147-156.

Nugroho, V. 2012. Pengaruh CAMEL dalam Memprediksi Kebangkrutan Bank, Jurnal Akuntansi, 14(1): 145-161.

Peraturan Bank Indonesia No 13/1/PBI/2011 Tentang Penilaian Tingkat Kesehatan Bank Umum.

Prajitno,T. 2009. Model Kepailitan Bank Umum di Indonesia. Jurnal Trikonomika, 8(1): 14-21.

Prasidha, D.K & Wahyudi, ST. 2015. Dampak Nilai Tukar dan Risk Based Bank Rating terhadap Prediksi Kondisi Perbankan Indonesia, QE Journal, 4(3): 122-142.

Rahmaniah, M & Wibowo, H. 2015. Analisis Potensi Terjadinya Financial Distress pada Bank Umum Syariah (BUS) di Indonesia. Jurnal Ekonomi dan Perbankan Syariah, 3(1): 1-20.

Rokhim, R & Yanti, M. 2014. Risiko NPL Kredit Bank Pembangunan Daerah sebagai Regional Champion, Jurnal Keuangan dan Perbankan, 18(1): 120-129.

Rustam, B. 2013. Manajemen Risiko Perbankan Syariah di Indonesia. Salemba Empat. Jakarta.

Sumantri & Jurnali, T. 2010. Manfaat Rasio Keuangan dalam Memprediksi Kepailitan Bank Nasional, Jurnal Bisnis dan Akuntansi. 12(1): 39-52.

Surat Edaran OJK No 13/24/DPNP Tentang Penilaian Tingkat Kesehatan Bank Umum.

Taswan. 2010. Manajemen Perbankan Konsep, Teknik, dan Aplikasi. Yogyakarta: UPP STIM YKPN. Bank Indonesia.

Wibowo, B & Ham, W. 2016. Dampak Risiko Default Bank terhadap Risiko Sistemik Perbankan dan Risiko Sistematik Bursa Saham di Lima Negara ASEAN. Jurnal Keuangan dan Perbankan, 20(1): 63-74

Zaghdoudi. 2013. Bank Failure Prediction with Logistic Regression. International Journal of Economics and Financial Issues, 3(2): 537-543.

Downloads

Published

2017-09-19

Issue

Section

FINANCE AND BANKING