

COMPOSITE : JOURNAL OF CIVIL ENGINEERING UNIVERSITAS MERDEKA MALANG

ISSN-P : 2964-6626

 Construction Engineering - Transportation Engineering - Water Engineering - Environmental Engineering - Construction Management - Geotechnical Engineering - Occupational Health and Safety in Construction - Construction and Environment Law. COMPOSITE : JOURNAL OF CIVIL ENGINEERING 2024. Vol. 03. Number. 01 : 29-39

ISSN-E : 2961-7111

Available (PDF) : https://jurnal.unmer.ac.id/index.php/jtsc

Economic Feasibility Analysis Based on Optimal Cash Flow Planning on the A. Road Construction Project

Safira Mahrusah¹, I Nyoman Dita Pahang Putra²

1.2 Program Studi Teknik Sipil, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Keywods : Cash Flow; Float Time; NPV; BCR; ROI Article History : Submitted : 28 Mei 2024 Accepted : 29 Mei 2024 Available Online : Juni 2024	Abstract Capital resources play an important role in a project. The optimization of working capital effectively and efficiently can have a major effect on achieving the maximum profit value for the contractor. Therefore, controlling cash flow is very important. One alternative that can be used to obtain maximum profit is the right scheduling. This study aims to plan scheduling optimally using the Ms.Poject ap`plication by utilizing float time. Where the utilization of float time uses a scheme with 25% down payment and without down payment. The float time variations used are 0%, 50% and 100%. An economic feasibility analysis vas conducted to review the NPV, BCR, and ROI values. From the analysis results, the greatest profitability was obtained in the alternative without a down payment using 100% float. With an NPV value of Rp16,164,849,630, BCR value of 1.0651, and ROI value of 6.51%. It can be concluded that this alternative has maximum profitability.
Korespondensi Penulis : Safira Mahrusah	DOI :
Email : safiraasm13@gmail.com	Sitasi : Mahrusah, Safira and Putra, I.N.D.P. 2024. Economic Feasibility Analysis Based on Optimal Cash Flow Planning on the A. Road Construction Project. Vol. 03 No. 01. Hal. 29-39.
	© 2023 Composite: Journal of Civil Engineering This is an open access article distributed under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/)

1. Introduction

Projects are planned and carried out using resources to achieve predetermined goals and objectives. One resource that plays an important role in a project is capital resources (Sulistyantoro et al., 2017). Capital is a financial resource provided by the owner to the implementing contractor. The optimization of working capital effectively and efficiently can have a major effect on achieving the maximum profit value for the implementing contractor. Therefore, controlling cash flow is very important (Pradnyawati et al., 2020).

Maximum profit is the main goal for every contractor. One alternative that can be used to obtain maximum profit is proper scheduling. In terms of scheduling, there are critical conditions where there is no float and non-critical conditions where there can be a lot of float. With the float owned by each non-critical job, alternative planning for float utilization can be carried out to produce new scheduling with more optimal cash flow planning so that the alternative will get maximum profit (Sulistyantoro et al., 2017).

In terms of scheduling, there are critical conditions where there is Performance represents the efforts of each company to assess and measure every success in generating profits, allowing the company to observe growth, prospects, and potential developments. A company is considered successful if it meets predetermined standards and goals. (Yulinda et al., 2022). Cash flow optimization is reviewed based on economic feasibility analysis. The method used is Discounted Cash Flow (DCF). In making the decision, the final value of several indicators is used, namely NPV (Net Present Value), BCR (Benefit Cost Ratio), and ROI (Return on Investment) (Khairinisa et al., 2020). From the economic feasibility analysis, it will be concluded that maximum profit can be obtained with the right type of scheduling.

The process of compiling a list of jobs to achieve a certain goal or purpose is called scheduling. It also contains information related to the start time and duration of work implementation. In order for a project to run smoothly, there needs to be scheduling. When preparing project scheduling, the relationship between jobs is very much taken into account so that a project can run coherently (Sugiyanto, 2020).

In this research, scheduling using the Ms. Project application needs to be done. The total float for each job will be obtained by planning using the Precedence Diagramming Method (PDM). PDM is one part of network planning. PDM has 4 logical relationships between jobs. There is also the concept of lag (day distance) to simplify the scheduling process (Widiasanti & Lenggogeni., 2013). Among them, finish to start (FS), start to finish (SF), start to start (SS), and finish to finish (FF). Then, float and critical path identification is carried out (Rani, 2016).

Cash flow is a plan for the flow of income (cash in) and expenses (cash out) during the project. With the cash flow, it is hoped that the overall project costs can be controlled so as not to disturb the project's cash balance (Sugiyanto, 2020). Cash flow diagrams are needed to make them easier to analyze.

In the project, there are also retentions and guarantees. The retention value on the project is 5% of the contract value. This 5% retention of payment is done so that the contractor can be responsible and complete the work as agreed. Moreover, if there is a discrepancy between the building and the plan, the contractor is obliged to repair it (Wirahman W et al., 2015). In a construction project, the owner will also ask the contractor to provide a guarantee as a requirement for fulfilling the agreement. Guarantees that must exist in the implementation of a construction project include a performance bond and a maintenance bond. These guarantees can be in the form of a bank guarantee (issued by the bank) or a surety bond (issued by the insurance company) (Siswanto & Sofjan, 2013).

Reviewing the economic aspects to determine whether a development or investment plan is feasible can be measured by several indicators. Each business can be given a feasible assessment by comparing the industry average or predetermined targets (Amrizal & Lisra, 2015). Indicators that are commonly used in analyzing the economic feasibility of development or investment are as follows:

Net Present Value (NPV) is an indicator obtained from estimating the difference between current and future costs and benefits. The NPV indicator is met if its final value is greater than zero. If the NPV value is positive, the project or industry is feasible to implement. But if the NPV value is negative, then the project is not feasible (Giatman, 2011)

The formula used in calculating NPV:

$$NVP = \sum_{t=1}^{t=n} \frac{(B_t - C_t)}{(1+i)^t}$$
(1)

Benefit Cost Ratio (BCR) is a comparison value between the equivalent value of benefits and costs at the same time. Some final decision results based on the BCR value are as follows (Zainuri, 2021):

If BCR \geq 1, then the investment's benefits are greater than the costs incurred, making the investment plan feasible. If BCR \leq 1, then the benefits of the investment are smaller than the costs incurred, so the investment plan can be said to be unfeasible and should not be continued.

The formula used in calculating BCR:

$$BCR = PWOB / PWOC$$

$$BCR = \sum_{t=1}^{t=n} \frac{B_t}{(1+i)^t} : \sum_{t=1}^{t=n} \frac{C_t}{(1+i)^t}$$
(2)

Return on Investment is a method used to assess, estimate and evaluate an investment based on net cash flow (Sakinah et al., 2021). ROI is a profitability ratio that measures a company's ability to generate profits with all investment funds in assets used for fish operations (Fadli, 2017).

$$ROI = \frac{Revenues after investment-Total cast invested}{Total Cash Invested} x100\%$$
(3)

2. Research Methods

The Jalan A project with a contract value of IDR 240,117,961,303 has a length of 7.431 kilometres starting from STA 6+550 - 13+891. This project has a work duration of 13 months (395 days). Starting on April 1, 2022 until April 30, 2023. The subject of this research is cash flow and scheduling in road construction projects. In this study, the required data is quantitative data, which can be calculated and described through numbers. There are 2 types of data were obtained in this study, namely primary and secondary. Primary data is obtained from direct observation in the field or by conducting interviews/questions and answers to the contractor. Meanwhile, secondary data is physical data processed by the contractor, such as the Cost Budget Plan or commonly called as RAB and S Curve.

In this study, several stages were carried out to obtain optimal cash flow in various conditions. Data processing and analysis are carried out in the following way:

1. Activity scheduling.

Activity scheduling uses the Ms. Project application with the PDM (Precedence Diagramming Method) method. In this study, the total float on the project is used.

2. Cash flow planning.

Cash flow planning is done by utilizing the float obtained. Where float will be used with a percentage of 0%, 50%, and 100%, from the use of the float, the total cost per week will be obtained.

- 3. Making a cash flow diagram. The cash flow diagram is made by analyzing the cash flow with a monthly payment system (monthly certificate), both without a down payment and with a 25% down payment.
- Economic feasibility analysis
 Economic feasibility analysis with NPV (Net Present Value) > 0, BCR (Benefit Cost Ratio) > 1, and ROI (Return On Investment) indicators. If you meet these three indicators, a project can be said to be feasible or not, economical or not.

3. Results and Discussion

Scheduling and Float Identification

The Ms. Project application analyzes the duration and relationship between jobs so that critical and non-critical activities will be identified. There will be no total float in critical activities so that the total float will be 0. But if the activity is not critical, it will appear how much total float.

No	Work Description	Duration	Predecessors	Total Float
1	Bill No. 1: General	384		0
		384	98FS-7 days; 79FS-4	0
			days; 93FS-7 days; 94FS-	
2	Mobilization		7 days; 95FS-7 days;	
			53FS-4 days; 54FS-4	
			days	
3	Traffic Management and Safety	55	4SS	2
4	Test Series	3	4SS	2
5	Occupational Safety and Health	384	4SS	0
6	Boring including SPT and Report	70	4SS	0
7	Dutch CPT including Report	39	4SS	0
8	Quality Management	384	4SS	0
9	Bill No. 2: Drainage	207		0
10	Excavation for Drainage Ditches	192	26FS+14 days	0
10	and Waterways			
11	Mortared Stonework	32	30FS-24 days	0
12	Porous Drainage or Filter Material	7	31; 46FS+8 days; 47FS+8	0
	Perforated or porous Pipe for	7	31; 46FS+8 days; 47FS+8	0
13	Subsurface Drainage Works, D 6		days	
	inch			
14	Bill No. 3: Earthworks and	298		0
	Geosynthetics	222	4000 ± 15 1 0500 ± 15	0
15		232	4255+15 days; 2/55+15	0
15	Common Excavation		days; 2655+15 days; 4F5-	
16	Coft Pool Execution	247	15 2555 + 14 davia	0
10	Soft Rock Excavation	247	2655+14 days	0
1/	Structurel Excernation 0 2 m donth	233	2755 + 44 down	0
10	Structural Excavation 0 - 2 in deput	100	2555+44 days	0
19	Excavation	182	3555+15 days; 5655-1	0
	Excavation Selected Embankment from	14	41	0
20	Borrow Pit	14	41	0
21	Grade Preparation	109	39FS-35 dave	0
21	Clearing and Grubbing	70	3713-35 days	0
22	Selected Tree Removal Diameter 15	70	3555+63 dave	0
23	- 30 cm 75 cm >75 cm	/	5555+65 days	0
	50 cm, 75 cm, 75 cm	7	31FS-15 days: 30FS-7	0
24	Geotextile for Separator, Class 2&3	,	davs	0
	Bill No. 5: Granular Pavement and	88		0
25	Cement Concrete Pavement			Ū
26	Aggregate Base Class A	88	41SS+35 days	0
27	Bill No. 6: Asphalt Pavement	90	J	0
•		39	49FS-14 days; 40SS; 32SS;	0
28	Prime Coat – Cut Back/Emulsion		33SS; 61	
29	Tack Coat – Cut Back/Emulsion	63	56SS+2 days	0

Table 1. PDM and Total Float Analysis Results with Ms. Project Application

No	Work Description	Duration	Predecessors	Total Float
30	Double Surface Dressing Aggregate	58	56SS+25 days	0
31	Bitumnious Material for Surface Dressing	58	56SS+25 days	0
32	Asphaltic Concrete - Wearing Course	63	52SS+7 days	0
33	Asphaltic Concrete - Binder Course	42	51SS+7 days	0
34	Anti Stripping Agent	62	55SS+3 days	0
35	Bill No. 7: Structure	262		0
36	Structural Concrete Class Fc' 30 MPa for Bridge Deck	45	66SS; 60FS+7 days; 63FS+28 days; 64FS+28 days; 65FS+28 days; 67FS+7 days	0
37	Structure Concrete Fc' 30 MPA	123	62SS+14 days; 75SS+4 days; 32FF; 33FF	0
38	Structural Concrete Fc' 20 MPa	46	73FF	0
39	Concrete Fc' 10 Mpa	49	74FS-35 days	0
40	PC-I Girder span 16 m, furnished	18	69	0
41	PC-I Girder span 20&40 m, furnished	18	63SS	0
42	PC-I Girder span 15 m, erection	7	60FS+7 days; 67FS+7 days	0
43	PC-I Girder span 20 m, erection	7	68SS+7 days	0
44	PC-I Girder span 40 m, erection	14	65FS+7 days	0
45	Precast Full Depth Panel, furnished	7	61SS+7 days	0
46	Precast Full Depth Panel, erection	14	59SS	0
47	Reinforcing Steel Plain Bars BjTP 280	116	62SS+14 days	0
48	Reinforcing Steel Deformed Bars BjTS 280, 420B	116	71SS	0
49	Cast in Place Concrete Pile, 800 mm diameter	77	38FS+7 days; 43FS+27 days; 44FS+27 days; 45FS+27 days	0
50	Sonic Crosshole Logging (CSL) Test on Cast in Place Pile, 800 mm	14	74FS-29 days	4
51	Stone Masonry	21	73FS-21 days	0
52	Non-grouted Rip Rap	21	76SS	0
53	Gabion with Galvanished Wire Mesh	21	77SS	0
54	Expansion Joint Seal Rubber Type 1	27	83; 70FS+32 days	0
55	Elastomeric Bearing Pad, Synthetic Laminated Rubber 350x280x60 mm	7	78FS-7 days	0
56	Steel Bridge Railing Type 1	14	80FS+42 days; 66FS+21	0
57	Bridge Name Plate	13	81; 83SS+7 days	9
58	Deck Drain with accessories	14	81FS-7 days	0
59	Steel Pipe for Drainage with Fitting and Support, 150 mm diameter	14	83SS	8
60	PVC Pipe for Drainage with Fitting and Support, 200 mm diameter	14	84; 82FS-7 days	8
61	Bill No. 8: Reinstatement and Minor Works	58		0

No	Work Description	Duration	Predecessors	Total Float
62	Stabilization by Vegetation	35	89SS+7 days	10
63	Stabilization by Vegetation of Vetiver System	48	89SS+7 days;87SS	10
64	Trees (Sukun)	58	70FS+7 days	0
65	Pavement Markings Thermoplastic Type	14	88FS-14 days; 57FS-4 days; 85FS+1 day	8
66	Road Signs with Reflector of Engineering Grade, Single	58	89SS	0
67	Guide Posts	58	91SS; 57SS+16 days	0
68	Kilometre Posts	27	92SS+31 days	0
69	Hectometer Posts	58	92SS	0
70	Guard Rail	58	97SS;96SS	0
71	Precast Portland Cement Concrete Curb Type 1 (Mountable)	58	89SS	0
72	Block Paving on Side Walk	58	89SS	0
73	Road Lighting, Single Arm, LED	41	97SS+17 days	0
74	Schedule of Daywork Rates: 1. Labour	384		0
75	Foreman, Labour, Skilled Labour	384	4SS	0
76	Schedule of Daywork Rates: 2. Materials	384		0
77	Gravel, Portland Cement	384	4SS	0
78	Schedule of Daywork Rates: 3. Contractor's Equipment	384		0
79	Dump Truck 3-4 M3	384	4SS	0

Source: Processed by Researcher

Identify Weights and Costs for Each Week

In the secondary data obtained, namely the S Curve, each job has a weight. The original weight, 0% float, is then processed according to the amount of float on the job (see Table 1), with a percentage of 0%, 50%, and 100% float utilization. Each week's weight on the job will affect the costs incurred that week. When expenses are large, income must also be balanced. Therefore, determining weekly weights and costs will be decisive when conducting a cash flow analysis.

Contract value = Rp 240.117.961.303

RAB	= Week Weight-1 (%) x contract value = 0,252 x Rp 240.117.961.303 = Rp 603.931.387
RAP	= RAB Week-1 - (10% x RAB Week-1) = Rp 603.931.387 - (10% x Rp 603.931.387) = Rp 543.538.249

Table 2. Identify Weights and Costs for Each Week (Cost Budget Plan (RAB) and Implementation Budget Plan (RAP))

		Float 0%]	Float 50%	l	Float 100%
Week-	Weight (%)	RAP	Weight (%)	RAP	Weight (%)	RAP
1	0,252	Rp543.538.249	0,252	Rp543.538.249	0,252	Rp543.538.249
2	0,230	Rp496.888.043	0,230	Rp496.888.043	0,230	Rp496.888.043
3	0,378	Rp817.337.318	0,378	Rp817.337.318	0,378	Rp817.337.318
4	0,403	Rp870.745.531	0,403	Rp870.745.531	0,403	Rp870.745.531
5	0,000	Rp0	0,000	Rp0	0,000	Rp0
6	0,884	Rp1.910.130.272	0,884	Rp1.910.130.272	0,884	Rp1.910.130.272
7	1,144	Rp2.472.549.846	1,144	Rp2.472.549.846	1,144	Rp2.472.549.846

34 | CJCE Volume 3 Nomor 1 2024

		Float 0%		Float 50%	Float 100 %	
Week-	Weight (%)	RAP	Weight (%)	RAP	Weight (%)	RAP
8	1,142	Rp2.467.718.240	1,142	Rp2.467.718.240	1,142	Rp2.467.718.240
9	1,213	Rp2.621.216.124	1,213	Rp2.621.216.124	1,213	Rp2.621.216.124
10	1,639	Rp3.542.203.426	1,639	Rp3.542.203.426	1,639	Rp3.542.203.426
11	1,639	Rp3.542.203.426	1,639	Rp3.542.203.426	1,639	Rp3.542.203.426
12	1,603	Rp3.463.186.805	1,603	Rp3.463.186.805	1,603	Rp3.463.186.805
13	1,606	Rp3.469.751.121	1,606	Rp3.469.751.121	1,606	Rp3.469.751.121
14	1,600	Rp3.457.910.869	1,600	Rp3.457.910.869	1,600	Rp3.457.910.869
15	1,596	Rp3.450.017.368	1,596	Rp3.450.017.368	1,596	Rp3.450.017.368
16	1,599	Rp3.454.857.102	1,599	Rp3.454.857.102	1,599	Rp3.454.857.102
17	1,597	Rp3.450.823.990	1,597	Rp3.450.823.990	1,597	Rp3.450.823.990
18	1,797	Rp3.884.109.735	1,797	Rp3.884.109.735	1,797	Rp3.884.109.735
19	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462
20	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462
21	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462
22	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462
23	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462	1,831	Rp3.956.458.462
24	1,868	Rp4.036.449.291	1,868	Rp4.036.449.291	1,868	Rp4.036.449.291
25	1,862	Rp4.023.620.752	1,858	Rp4.015.545.068	1,854	Rp4.007.469.383
26	2,565	Rp5.543.876.693	2,565	Rp5.543.876.693	2,565	Rp5.543.876.693
27	2,681	Rp5.793.760.153	2,685	Rp5.801.835.838	2,688	Rp5.809.911.523
28	2,683	Rp5.797.888.881	2,683	Rp5.797.888.881	2,683	Rp5.797.888.881
29	2,478	Rp5.354.203.775	2,478	Rp5.354.203.775	2,478	Rp5.354.203.775
30	2,438	Rp5.269.064.727	2,438	Rp5.269.064.727	2,438	Rp5.269.064.727
31	2,423	Rp5.235.724.104	2,423	Rp5.235.724.104	2,423	Rp5.235.724.104
32	2,703	Rp5.840.768.696	2,703	Rp5.840.768.696	2,703	Rp5.840.768.696
33	2,750	Rp5.942.535.590	2,750	Rp5.942.535.590	2,750	Rp5.942.535.590
34	2,750	Rp5.942.535.590	2,750	Rp5.942.535.590	2,750	Rp5.942.535.590
35	2,684	Rp5.800.065.965	2,684	Rp5.800.065.965	2,684	Rp5.800.065.965
36	2,719	Rp5.876.428.856	2,719	Rp5.876.428.856	2,719	Rp5.876.428.856
37	2,817	Rp6.088.068.891	2,817	Rp6.088.068.891	2,817	Rp6.088.068.891
38	3,408	Rp7.364.633.070	3,408	Rp7.364.633.070	3,408	Rp7.364.633.070
39	2,577	Rp5.568.381.301	2,577	Rp5.568.381.301	2,577	Rp5.568.381.301
40	3,077	Rp6.649.326.579	3,077	Rp6.649.326.579	3,077	Rp6.649.326.579
41	2,912	Rp6.293.767.934	2,912	Rp6.293.767.934	2,912	Rp6.293.767.934
42	2,297	Rp4.963.708.976	2,297	Rp4.963.708.976	2,297	Rp4.963.708.976
43	1,698	Rp3.668.852.462	1,698	Rp3.668.852.462	1,698	Rp3.668.852.462
44	1,732	Rp3.743.669.145	1,732	Rp3.743.669.145	1,732	Rp3.743.669.145
45	1,728	Rp3.733.415.508	1,728	Rp3.733.415.508	1,728	Rp3.733.415.508
46	1,672	Rp3.613.541.913	1,672	Rp3.613.541.913	1,672	Rp3.613.541.913
47	1,676	Rp3.621.439.257	1,676	Rp3.621.439.257	1,676	Rp3.621.439.257
48	1,988	Rp4.295.996.742	1,988	Rp4.295.996.742	1,988	Rp4.295.996.742
49	2,127	Rp4.597.562.701	2,001	Rp4.324.104.342	1,976	Rp4.269.412.670
50	1,418	Rp3.064.750.290	1,418	Rp3.064.750.290	1,317	Rp2.845.983.602
51	1,357	Rp2.933.103.473	1,357	Rp2.932.117.588	1,357	Rp2.932.117.588
52	1,388	Rp2.999.904.115	1,388	Rp2.999.904.115	1,388	Rp2.999.411.172
53	1,389	Rp3.001.349.703	1,389	Rp3.002.335.588	1,389	Rp3.002.499.902
54	1,115	Rp2.409.414.410	1,078	Rp2.329.029.830	1,066	Rp2.303.782.080
55	1,020	Rp2.204.055.897	1,020	Rp2.204.055.897	0,995	Rp2.149.247.694
56	0,431	Rp931.348.946	0,595	Rp1.285.191.886	0,647	Rp1.398.230.678
57	0,095	Rp205.471.008	0,095	Rp205.471.008	0,207	Rp446.275.156
		C	. D	- 1 1 D 1		

Source: Processed by Researcher

Cash Flow Identification with 25% Down Payment at Float 100% Utilization

Figure 1. Cash Flow Diagram with 25% Down Payment

Cash In

Based on Figure 1, it can be analyzed that this project involves 6 types of cash: loans, down payments, terms payment, return of down payment guarantees, return of performance guarantees, and retention.

When a project is going to run, it needs capital. The capital in this project comes from bank loan funds. In the alternative with 25% down payment, the capital required is 40% of the contract value. The amount of capital value is seen from the cash flow that has been identified, where the capital must be able to make the company's cash, not minus.

A 5% retention (holding) will be charged at each term payment as a maintenance guarantee. The retention will be returned when the maintenance period is complete or during the FHO (Final Hand Over) period. Meanwhile, the performance and down payment guarantees will be returned after the project is completed or during the PHO (Provisional Hand Over) period.

Week-	Description	Cash In		Total
		Payment	Retention 5%	
0	Loan 40% contract	Rp 96.047.184.521		
	value	_		- Dr 156 076 674 847
	25% Down	Rp 60.029.490.326		- Kp 130.070.074.047
	Payment	_		
22	Term Payment	Rp 1.953.357.287	Rp 97.667.864	Rp 1.855.689.423
27	Term Payment	Rp 23.889.680.325	Rp 1.194.484.016	Rp 22.695.196.309
31	Term Payment	Rp 24.701.187.672	Rp 1.235.059.384	Rp 23.466.128.289
35	Term Payment	Rp 25.512.848.867	Rp 1.275.642.443	Rp 24.237.206.424
40	Term Payment	Rp 34.108.420.092	Rp 1.705.421.005	Rp 32.402.999.088
44	Term Payment	Rp 23.972.951.057	Rp 1.198.647.553	Rp 22.774.303.504
48	Term Payment	Rp 16.346.739.804	Rp 817.336.990	Rp 15.529.402.814
53	Term Payment	Rp 19.269.913.082	Rp 963.495.654	Rp 18.306.417.428
	Term Payment	Rp 10.333.372.790	Rp 516.668.639	
	5% Performance	Rp 12.005.898.065		-
57	Guarantee			- Pp 81 852 002 541
57	25% Down	Rp 60.029.490.326		- Kp 01.002.092.041
	Payment			
	guarantee			
109	Retention	Rp 9.004.423.549		Rp 9.004.423.549

Table 3. Cash In Recapitulation with 25% Down Payment at 100% Float Utilization

Source: Processed by Researcher

Cash Out

Figure 1 analyzes the fact that this project has four types of cash out: implementation guarantees, advance guarantees, Installments, and Implementation Budget Plan which has been shown in Table 2.

Loan payment on this project is paid during the PHO period or when the project has been completed. Installments with an interest rate of 6.67% are added with a penalty interest of 5% to 12.67%.

Penalty interest is charged on the loan because the loan payment is made at the end of the loan period.

Loan payment = P (1+i)n = Rp96.047.184.521 (1 $+\frac{12,67}{52}$)57 = (Rp110.338.547.762)

Table 4. Cash Out with 25% Down Payment at 100% Float Utilization

Week-	Description	Cash Out	Total
0	5% Performance Guarantee	(Rp12.005.898.065)	$(D_{22}72, 0.25, 209, 201)$
0	25% Down Payment Guarantee (Rp60.029.490.326)		(Kp72.055.566.591)
57	RAP	(Rp446.275.156)	$(P_{m}110, 784, 822, 010)$
	Loan Payment	(Rp110.338.547.762)	(Kp110.764.622.919)
	0 D	11 D 1	

Source: Processed by Researcher

Cash Flow Identification without Down Payment In Float 100%

Figure 2. Cash Flow Diagram without Down Payment

Cash In

Based on Figure 2, it can be analyzed that this project involves 4 types of cash: loans, terms payment, return of performance guarantee, and retention.

In the alternative without down payment, the capital required is 15% of the contract value. The amount of capital value is seen from the cash flow that has been identified, where the capital must be able to make the company's cash, not minus.

A 5% retention (holding) will be charged at each term payment as a maintenance guarantee. The retention will be returned when the maintenance period is complete or during the FHO (Final Hand Over) period. Meanwhile, the performance and down payment guarantees will be returned after the project is completed or during the PHO (Provisional Hand Over) period.

Table 5. Cash In Recap	itulation with 25% Dow	n Payment at 100%	Float Utilization
------------------------	------------------------	-------------------	-------------------

Week-	Description	Cash	ı In	Total
	_	Payment	Retention 5%	
0	Loan 15%	Rp 36.017.694.195		Rp 36.017.694.195
	contract value			
6	Term Payment	Rp 3.031.676.823	Rp 151.583.841	Rp 2.880.092.982
10	Term Payment	Rp 10.524.016.092	Rp 526.200.805	Rp 9.997.815.288
14	Term Payment	Rp 15.574.827.530	Rp 778.741.377	Rp 14.796.086.154
18	Term Payment	Rp 15.348.454.809	Rp 767.422.740	Rp 14.581.032.069
22	Term Payment	Rp 17.503.872.357	Rp 875.193.618	Rp 16.628.678.739
27	Term Payment	Rp 23.889.680.325	Rp 1.194.484.016	Rp 22.695.196.309
31	Term Payment	Rp 24.701.187.672	Rp 1.235.059.384	Rp 23.466.128.289
35	Term Payment	Rp 25.512.848.867	Rp 1.275.642.443	Rp 24.237.206.424
40	Term Payment	Rp 34.108.420.092	Rp 1.705.421.005	Rp 32.402.999.088
44	Term Payment	Rp 23.972.951.057	Rp 1.198.647.553	Rp 22.774.303.504
48	Term Payment	Rp 16.346.739.804	Rp 817.336.990	Rp 15.529.402.814
53	Term Payment	Rp 19.269.913.082	Rp 963.495.654	Rp 18.306.417.428

Week-	Description	Cash In		Total	
		Payment	Retention 5%		
	Term Payment	Rp 10.333.372.790	Rp 516.668.639		
57	5% Performance	Rp 12.005.898.065		Rp 21.822.602.215	
	Guarantee				
109	Retention	Rp 12.005.898.065		Rp 12.005.898.065	
Source: Processed by Researcher					

Cash Out

Figure 1 analyzes the fact that this project has four types of cash out: implementation guarantees, advance guarantees, Installments, and Implementation Budget Plan which has been shown in Table 2.

Loan payment on this project is paid during the PHO period or when the project has been completed. Installments with an interest rate of 6.67% are added with a penalty interest of 5% to 12.67%. Penalty interest is charged on the loan because the loan payment is made at the end of the loan period.

Loan payment = P(1+i)n= Rp 36.01

 $= \operatorname{Rp} 36.017.694.195 (1 + \frac{12.67}{52})57$ $= \operatorname{Rp} 41.376.955.411$

Table 6. Cash Out witout Down Payment at 100% Float Utilization

Week	Description	Cash Out	Total				
0	5% Performance Guarantee		(Rp12.005.898.065)				
57	RAP	(Rp446.275.156)	(Dm/1 802 020 E(7)				
	Loan Peyment	(Rp41.376.955.411)	(Kp41.625.250.567)				
Source: Processed by Researcher							

Economic Feasibility Analysis

Table 7. Recapitulation of NPV, BCR, and ROI Calculation Results

Description	Without Down Payment			25% Down Payment				
	NPV	BCR	ROI	NPV	BCR	ROI		
Float 0%	Rp 16.161.047.604	1,0650	6,504%	Rp 14.802.366.366	1,0402	4,017%		
Float 50%	Rp 16.162.986.659	1,0650	6,505%	Rp 14.804.305.421	1,0402	4,017%		
Float 100%	Rp 16.164.849.630	1,0651	6,506%	Rp 14.806.168.392	1,0402	4,018%		
Courses Dragona d by Decourse or								

Source: Processed by Researcher

4. Conclusion

In the analysis with a 25% down payment from the owner, the greatest profitability was obtained using 100% float. With an NPV value of Rp14,806,168,392, a BCR value of 1.0402, and an ROI value of 4.02%. In the analysis without an advance from the owner, the greatest profitability is obtained in the alternative use of 100% float. With an NPV value of Rp16,164,849,630, a BCR value of 1.0651, and an ROI value of 6.51%. So, the conclusion from the comparison of maximum profitability between alternatives with a 25% down payment and without a down payment is that the alternative without a down payment with 100% float usage shows the highest NPV, BCR, and ROI values.

This is where the alternative has maximum profitability based on the results of the analysis that has been done. Economic Feasibility Analysis. The suggestions from the research that has been done. Namely, further study is needed to analyze the feasibility of construction development profitability by considering escalation at the dollar exchange rate. Additional research is required to explore the feasibility of construction development profitability by comparing materials with a greater percentage of TKDN.

5. Daftar Pustaka

Amrizal, & Lisra, J. (2015). Kajian Kelayakan Ekonomi Pembanguna Jembatan Layang Simpang Selayang Kota Medan. Jurnal Teknik Sipil Unaya, 1(1), 29–34. https://doi.org/10.30601/jtsu.v1i1.3

38 | CJCE Volume 3 Nomor 1 2024

Fadli, A. A. Y. (2017). Analisis pengaruh Return On Investmen (ROI) dan Debt Equity Ratio (DER) terhadap Deviden Payout Ratio (DPR) pada PT. Hanjaya Mandala Sampoerna, TBK periode 2011-2015. *Jiep*, 17(1), 61–70.
https://doi.org/10.200(1/ijap.c17i1.8508)

https://doi.org/https://doi.org/10.20961/jiep.v17i1.8508

- Giatman, M. (2011). *Ekonomi Teknik*. PT Raja Grafindo Persada. http://repository.unp.ac.id/15871/1/Ekonomi-Teknik-Giatman-r.pdf
- Khairinisa, R., Putra, I. N. D. P., & Rumintang, A. (2020). Analisis Pembiayaan Investasi Pada Pembangunan Perumahan Taman Karangbahagia Tahap 1 Kabupaten Bekasi, Jawa Barat. *Paduraksa: Jurnal Teknik Sipil Universitas Warmadewa*, 9, 1–10.
- Pradnyawati, P. M. D., Sudiarsa, M., & Pertiwi, I. G. A. I. M. (2020). Analisis Optimalisasi Cash Flow Terhadap Kebutuhan Modal Kerja Dan Tingkat Profitabilitas (Studi Kasus Proyek Pembangunan Gedung Kantor Dinas DIKPORA Kota Denpasar). *Prosiding Seminar Nasional Ketekniksipilan Bidang Vokasional*, 1–6.

https://ojs.pnb.ac.id/index.php/Proceedings/article/view/1671

Siswanto, A. H., & Sofjan, S. (2013). Perbandingan Hukum Antara Perjanjian Garansi (Indemnity) Dengan Perjanjian Penanggungan Hutang Ditinjau Dari Konsep Hukum Dan Pelaksanaannya. *Lex Jurnalica*, 10(9).

https://ejurnal.esaunggul.ac.id/index.php/Lex/article/view/365/334

- Sugiyanto. (2020). Manajemen Pengendalian Proyek. Deepublish. http://43ce02b36ccf.sn.mynetname.net:8080/61/1/Buku Manajemen Pengendalian Proyek_compressed.pdf
- Sulistyantoro, T. N., Nugraheni, F., & A. Faisol M. (2017). Pemanfaatan Pendanaan Dari Bank Syariah Untuk Analisis Perencanaan Cash Flow Optimal Pada Proyek Konstruksi. Seminar Nasional Sains Dan Teknologi, 1–10.

https://jurnal.umj.ac.id/index.php/semnastek/article/view/1812

- Widiasanti, I., & Lenggogeni. (2013). *Manajemen Konstruksi*. PT Remaja Rosdakarya. https://ebooktekniksipil.files.wordpress.com/2014/05/1714_manajemen-konstruksi.pdf
- Wirahman W, L., Warka, I. G. P., & Apriliana, A. (2015). Pengaruh Sistem Pembayaran Terhadap Cash Flow Optimal Pada Proyek Pembangunan Gedung Pengadilan Negeri Praya. *Spektrum Sipil*, 2, 1–13. https://spektrum.unram.ac.id/index.php/Spektrum/article/view/30
- Yulinda, I., Chandrarin, G., Subiyantoro, E., & Abdillah, P. (2022). Cash Flow Capability Analysis Predicting Company Financial Performance During Covid 19 Pandemic (Empirical Study of Sector Companies Food and Beverages in Indonesia. 7th ICGSS Sustainable Innovation Legal Policy, Alternative Technology and Green Economy. https://www.jurnal.unmer.ac.id/index.php/icgss/article/view/9276%0Ahttps://www.jurnal.unme r.ac.id/index.php/icgss/article/download/9276/4370
- Zainuri. (2021). Ekonomi Teknik. CV Jasa Surya. https://repository.unilak.ac.id/2627/1/Buku Ekonomi Teknik.pdf