Algoritma K-Means Clustering Sebagai Penentuan Beasiswa PIP pada SMPN 9 Kota Blitar

Rizki Dwi Romadhona, Arta Ainur Rofiq

Abstract


The structure in this study involves taking data on obtaining PIP scholarships with various predetermined indicators (parental income, parents' occupation, vehicle ownership, KIP, KKS, place of residence, number of siblings, PKH) as scholarship recipients. Held in one of the state schools SMPN 9 Blitar City. Where the data is processed with an unsupervised learning algorithm, namely K-Means Clustering with the calculation of the Euclidean distance with the closest value distance from the predetermined centroid which is then used to determine the recipient of the PIP scholarship. The sample test was conducted on 289 students which could be implemented properly and the cluster was running according to the provisions set as indicators of 10 attributes (X1-X10).

Keywords


PIP Scholarships; K-Means Clustering; Euclidean distance

Full Text:

PDF

References


Devi Tri Yuliana, M. Ivan Ariful Fathoni, Naning Kurniawati. (2022). Penentuan Penerima Kartu Indonesia Pintar KIP Kuliah dengan Menggunakan Metode K-Means Clustering.

Rini Gustini, RZ. Abdul Aziz. (2019). Pengembangan Model Pengambilan Keputusan Penerima Kartu Indonesia Pintar (KIP) Dengan Metode K-Means Dan Average Linkage Clustering (Studi Kasus : SMA Negeri 1 Kotagajah).

Yosep Filki. (2022). Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa.

Darlinda, Joy Nashar Utamajaya. (2022). Sistem Pendukung Keputusan Penerima Beasiswa Program Indonesia Pintar Menggunakan Metode Algoritma K-Means Clustering.

Hartama, D., & Anjelita, M. (2022). Analysis of Silhouette Coefficient Evaluation with Euclidean Distance in the Clustering Method (Case Study: Number of Public Schools in Indonesia). Jurnal Mantik, 6(3), 3667-3677.

Lubis, A. R., & Lubis, M. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9(1), 326-338.

Karo, I. M. K., Khosuri, A., & Setiawan, R. (2021, October). Effects of Distance Measurement Methods in K-Nearest Neighbor Algorithm to Select Indonesia Smart Card Recipient. In 2021 International Conference on Data Science and Its Applications (ICoDSA) (pp. 209-214). IEEE.

Fammaldo, E., & Hakim, L. (2018). Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Kesejahteraan Keluarga Untuk Program Kartu Indonesia Pintar. Jurnal Ilmiah Teknologi Infomasi Terapan, 5(1), 23-31.

Sompa, M., & Ishak, R. (2022). Clustering Tingkat Ekonomi Mahasiswa Calon Penerima Kartu Indonesia Pintar (KIP) Kuliah Metode K-Means. Jurnal Ilmiah Ilmu Komputer Banthayo Lo Komputer, 1(2), 65-71.

Nuraeni, F., Kurniadi, D., & Dermawan, G. F. (2023). Pemetaan Karakteristik Mahasiswa Penerima Kartu Indonesia Pintar Kuliah (KIP-K) menggunakan Algoritma K-Means++. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 437-443.




DOI: https://doi.org/10.26905/jasiek.v5i1.10162

Refbacks

  • There are currently no refbacks.



JASIEK(Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer)
Department of Electrical Engineering, Universitas Merdeka Malang



Image result for address iconTaman Agung Street No. 1, Sukun, Malang Kota, Jawa Timur, 65146, Indonesia
Image result for address blue icon[email protected]
Image result for address blue icon0822-3333-4114
@jasiekunmer

Supported By: