Pendekatan Hibrida Decision Tree-Particle Swarm Optimization untuk Deteksi Dini Penyakit Ginjal Kronis
DOI:
https://doi.org/10.26905/jasiek.v6i1.13006Keywords:
Decision Tree, Particle Swarm Optimization, Pendekatan Hibrida, Penyakit Ginjal KronisAbstract
Penelitian ini mengusulkan pendekatan hibrida yang menggabungkan Decision Tree (DT) dengan Particle Swarm Optimization (PSO) untuk deteksi dini Penyakit Ginjal Kronis (PGK). Kami mengidentifikasi permasalahan dalam akurasi yang kurang maksimal dalam prediksi PGK dengan menggunakan metode DT padahal metode DT dapat ditingkatkan, sehingga kami mengusulkan solusi dengan mengintegrasikan kejelasan interpretasi DT dan kemampuan optimasi PSO. Melalui analisis data klinis CKD, kami menunjukkan peningkatan signifikan dalam akurasi dan AUC dari 98.25% menjadi 98.50% dan 0.931 menjadi 0.984, masing-masing. Evaluasi menunjukkan peningkatan presisi dari 98.04% menjadi 98.71%. Pendekatan hibrida DT+PSO menawarkan kemungkinan aplikasi praktis dalam manajemen dan prognosis PGK, serta unggul dalam akurasi prediksi dan interpretasi model. Temuan ini memiliki implikasi penting dalam pemahaman dan penanganan PGK secara dini.References
I. M. D. Priyatama and Ridwansyah, “Klasifikasi Anak Berkebutuhan Khusus Tunagrahita Menggunakan Metode Algoritma C4.5,†Paradigma, vol. 24, no. 1, pp. 90–95, 2022, doi: https://doi.org/10.31294/paradigma.v24i1.1087.
A. Hamid and Ridwansyah, “Optimizing Heart Failure Detection : A Comparison between Naive Bayes and Particle Swarm Optimization,†Paradigma, vol. 26, no. 1, pp. 30–36, 2024, doi: https://doi.org/10.31294/p.v26i1.3284.
S. B. Akben, “Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History,†Irbm, vol. 39, no. 5, pp. 353–358, 2019, doi: 10.1016/j.irbm.2018.09.004.
S. Zeynu, “Prediction of Chronic Kidney Disease Using Data Mining Feature Selection and Ensemble Method,†WSEAS Trans. Inf. Sci. Appl., vol. 15, pp. 168–176, 2019, [Online]. Available: https://www.wseas.org/multimedia/journals/information/2018/a405909-911.php.
E. H. A. Rady and A. S. Anwar, “Prediction of kidney disease stages using data mining algorithms,†Informatics Med. Unlocked, vol. 15, no. December 2019, p. 100178, 2019, doi: 10.1016/j.imu.2019.100178.
Arif-Ul-Islam and S. H. Ripon, “Rule Induction and Prediction of Chronic Kidney Disease Using Boosting Classifiers, Ant-Miner and J48 Decision Tree,†2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, pp. 1–6, 2019, doi: 10.1109/ECACE.2019.8679388.
A. Alaiad, H. Najadat, B. Mohsen, and K. Balhaf, “Classification and Association Rule Mining Technique for Predicting Chronic Kidney Disease,†J. Inf. Knowl. Manag., vol. 19, no. 1, 2020, doi: 10.1142/S0219649220400158.
J. Snegha, V. Tharani, S. D. Preetha, R. Charanya, and S. Bhavani, “Chronic Kidney Disease Prediction Using Data Mining,†Int. Conf. Emerg. Trends Inf. Technol. Eng. ic-ETITE 2020, pp. 1–5, 2020, doi: 10.1109/ic-ETITE47903.2020.482.
S. Rezayi, K. Maghooli, and S. Saeedi, “Applying Data Mining Approaches for Chronic Kidney Disease Diagnosis,†Int. J. Intell. Syst. Appl. Eng., 2021, doi: DOI: https://doi.org/10.18201/ijisae.2021473640.
R. Pramanik, S. Khare, and M. K. Gourisaria, “Inferring the Occurrence of Chronic Kidney Failure: A Data Mining Solution,†2021, doi: https://doi.org/10.1007/978-981-16-3346-1_59.
I. Saha, M. K. Gourisaria, and G. M. Harshvardhan, “Classification System for Prediction of Chronic Kidney Disease Using Data Mining Techniques,†2022.
E. Purwaningsih, “Improving the Performance of Support Vector Machine With Forward Selection for Prediction of Chronic Kidney Disease,†JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 8, no. 1, pp. 18–24, 2022, doi: 10.33480/jitk.v8i1.3327.
G. Wijaya, “Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease,†vol. 9, no. 1, pp. 136–144, 2024, doi: https://doi.org/10.33395/sinkron.v9i1.13112 e-ISSN.
J. Nasir, A. W. Aranski, and Y. L. Setiawan, “Jaringan Syaraf Tiruan untuk Memprediksi Pengambilan Keputusan untuk Memberikan Kredit kapada Calon Nasabah Baru,†J. Apl. Sains, Inf. , Elektron. dan Komput., vol. 5, no. 2, 2023, doi: 10.26905/jasiek.v5i2.11549.
R. Ridwansyah, V. Riyanto, A. Hamid, S. Rahayu, and J. J. Purnama, “Grouping Data in Predicting Infant Mortality Using K-Means and Decision Tree,†Paradigma, vol. 24, no. 2, pp. 168–174, 2022, doi: 10.31294/paradigma.v24i2.1399.
I. Ariyati, S. Rosyida, K. Ramanda, V. Riyanto, S. Faizah, and Ridwansyah, “Optimization of the Decision Tree Algorithm Used Particle Swarm Optimization in the Selection of Digital Payments,†in Journal of Physics: Conference Series, 2020, vol. 1641, no. 1, doi: 10.1088/1742-6596/1641/1/012090.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.