Implementasi Modified K-Nearest Neighbor (MKNN) untuk Deteksi Penyakit Anemia

Authors

  • Putra Dwi Wira Gardha Yuniahans Universitas Pembangunan Nasional Veteran Jawa Timur
  • Anggraini Puspita Sari Universitas Pembangunan Nasional Veteran Jawa Timur
  • Yisti Vita Via Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.26905/jasiek.v7i1.13425

Keywords:

Anemia, Classification , Early Diagnosis , Machine Learning , MKNN

Abstract

Anemia is a condition where the hemoglobin level in the human body drops below the normal threshold. It can cause several negative effects, such as delayed psychomotor development, a higher risk of infectious diseases, and in women, the possibility of premature birth. Therefore, early detection of anemia is essential to speed up treatment and recovery. One method that can support the diagnostic process is machine learning, particularly the Modified K-Nearest Neighbor (MKNN) algorithm. MKNN is an improved of standard KNN, incorporating additional steps such as validity calculation and weighted voting, which are not present in the original version. In this study, MKNN was applied to detect anemia and achieved an accuracy of 84% using a 75:25 train-test data split and k=5. The dataset was collected from Jemursari Hospital in Surabaya, consisting of 100 patient records. These records were used to evaluate the performance of the MKNN algorithm in anemia detection.

Downloads

Download data is not yet available.

References

[1] Cholissodin, I., Marvela Evanita, F., Tedjasulaksana, J. J., Wahyuditomo, K. W., & Korespondensi, P. (2021). Klasifikasi tingkat laju data covid-19 untuk mitigasi penyebaran menggunakan metode modified k-nearest neighbor (mknn). 8(3). https://doi.org/10.25126/jtiik.2021834400

[2] Sari, A. P., Suzuki, H., Kitajima, T., Yasuno, T., Prasetya, D. A., & Arifuddin, R. (2022). Short‐Term Wind Speed and Direction Forecasting by 3DCNN and Deep Convolutional LSTM. IEEJ Transactions on Electrical and Electronic Engineering, 17(11), 1620-1628.

[3] Spezia, J., Carvalho, L. F. da S., Camargo-Filho, M. F. de A., Furman, A. E., Utiyama, S. R. da R., & Henneberg, R. (2018). Prevalence of anemia in schools of the metropolitan region of Curitiba, Brazil. Hematology, Transfusion and Cell Therapy, 40(2), 151–155. https://doi.org/10.1016/j.htct.2017.11.007

[4] Gumilang, L., Nurlaelasari, D., Dhamayanti, M., Tina Dewi Judistiani, R., Martini, N., Yogi Pramatirta, A., & Anak Rumah Sakit Umum Pusat Hasan Sadikin Bandung Fakultas Kedokteran, K. (2021). Gambaran Faktor Risiko Kejadian Anemia Pada Balita. Jurnal Kebidanan Malahayati), 7(4), 681–687. https://doi.org/10.33024

[5] Levy, T. S., de la Cruz Góngora, V., & Villalpando, S. (2015). Anemia: Causes and Prevalence. In Encyclopedia of Food and Health (pp. 156–163). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00029-5

[6] Who. (2023, May 12). WHO calls for accelerated action to reduce anaemia, https://www.who.int/news/item/12-05-2023-who-calls-for-accelerated-action-to-reduce-anaemia>

[7] Kemenkes. (2022, November 16). Remaja Bebas Anemia: Konsentrasi Belajar Meningkat, Bebas Prestasi. https://ayosehat.kemkes.go.id/remaja-bebas-anemia-konsentrasi-belajar-meningkat-bebas-prestasi>

[8] Hermawan, A., & Avianto, D. (2021). Prediksi Curah Hujan Wilayah Provinsi Yogyakarta dengan Algoritma Neural Network. JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer), 3(1), 47-54.

[9] Sivakumar, M., Parthasarathy, S., & Padmapriya, T. (2024). Trade-off between training and testing ratio in machine learning for medical image processing. PeerJ Computer Science, 10, e2245.

[10] Rizky, J. L., & Putra, Z. P. Analisis Perbandingan Algoritma Pembelajaran Mesin untuk Meningkatkan Akurasi dan Klasifikasi Tumor Otak. IJAI (Indonesian Journal of Applied Informatics), 9(1), 31-44.

[11] Jatoi, S., Aamir Panhwar, M., Sulleman Memon, M., Ahmed Baloch, J., & Saddar, S. (2018). Mining Complete Blood Count Reports For Disease Discovery. In IJCSNS International Journal of Computer Science and Network Security (Vol. 18, Issue 1).

[12] Ulva, T., Stikes, K., & Kendal, M. (2022). Peran Edukasi Gizi Dalam Pencegahan Anemia Pada Remaja Di Indonesia: Literature Review. 4(1).

[13] Cappellini, M. D., Musallam, K. M., & Taher, A. T. (2020). Iron deficiency anaemia revisited. Journal of internal medicine, 287(2), 153-170.

[14] Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in convolutional neural networks. Neural networks, 106, 249-259.

[15] Li, W., Zhong, K., Wang, J., & Chen, D. (2021). A dynamic algorithm based on cohesive entropy for influence maximization in social networks. Expert Systems with Applications, 169, 114207.

Downloads

Published

2025-06-03

Issue

Section

Articles