Desain Algoritma Autonomous Deep Learning (ADL) untuk Sistem Kontrol Tangan Prostetis pada Disabilitas

Authors

  • Widhi Winata Sakti Universitas PGRI Banyuwangi
  • Siti Tsaniyatul Miratis Sulthoniyah Universitas PGRI Banyuwangi
  • Donny Setiawan Universitas PGRI Banyuwangi
  • Adi Mulyadi Universitas PGRI Banyuwangi
  • Khairul Anam Universitas Jember

DOI:

https://doi.org/10.26905/jasiek.v7i2.14184

Keywords:

Disabilitas, EEG, Klasifikasi, Kontrol, ADL

Abstract

Penyandang Disabilitas (ODD) memiliki risiko kemiskinan yang tinggi di Indonesia dan dianggap tidak produktif. Menurut data Badan Pusat Statistik (BPS), pada tahun 2019-2020, jumlah penyandang disabilitas di Indonesia mencapai lebih dari 28 juta orang. Tangan palsu telah menjadi solusi untuk membantu individu penyandang disabilitas meningkatkan kualitas hidupnya. Pemrosesan sinyal EEG untuk kontrol prostetik masih tergolong baru, dan diperlukan penelitian lebih lanjut untuk mengoptimalkan kinerja algoritma. diusulkan menggunakan desain algoritma Autonomous Deep Learning (ADL). Struktur jaringan dapat dibangun dari awal tanpa adanya pengaturan manual, mengingat kompleksitas jaringan saraf yang sering mengalami overfitting, model tidak efektif dalam klasifikasi. Hasil percobaan dari 6 subjek dengan rata-rata 96% dengan error 10% pada subjek mandiri

Author Biography

Widhi Winata Sakti, Universitas PGRI Banyuwangi

Program Studi Teknik Elektro, Fakultas Teknik

References

J. K. Sains, “Stigma Penyandang Disabilitas dalam Bekerja di Indonesia : Literature Review Stigma of People with Disabilities in Working in Indonesia : Literature Review Jurnal Kolaboratif Sains ( JKS ),†vol. 7, no. 3, pp. 1076–1086, 2024, doi: 10.56338/jks.v7i3.4669.

Hastuti, R. K. Dewi, R. P. Pramana, and H. Sadaly, Kendala Mewujudkan Pembangunan Inklusif Penyandang Disabilitas. 2020. [Online]. Available: www.smeru.or.id.

J. E. Prynn et al., “Disability among older people: Analysis of data from disability surveys in six low-and middle-income countries,†Int. J. Environ. Res. Public Health, vol. 18, no. 13, 2021, doi: 10.3390/ijerph18136962.

C. A. Calderon-Cordova, C. Ramirez, V. Barros, and G. Punin, “Design and Deployment of Grasp Control System applied to robotic hand prosthesis,†IEEE Lat. Am. Trans., vol. 15, no. 2, pp. 181–188, 2017, doi: 10.1109/TLA.2017.7854610.

S. Ramasamy Ramamurthy and N. Roy, “Recent trends in machine learning for human activity recognition—A survey,†Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, pp. 1–11, 2018, doi: 10.1002/widm.1254.

R. Roy, D. Sikdar, M. Mahadevappa, and C. S. Kumar, “A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG,†Med. Biol. Eng. Comput., vol. 56, no. 11, pp. 2095–2107, 2018, doi: 10.1007/s11517-018-1833-0.

C. Timplalexis, K. Diamantaras, and I. Chouvarda, “Classification of sleep stages for healthy subjects and patients with minor sleep disorders,†Proc. - 2019 IEEE 19th Int. Conf. Bioinforma. Bioeng. BIBE 2019, no. January 2020, pp. 344–351, 2019, doi: 10.1109/BIBE.2019.00068.

S. Sakhavi, C. Guan, and S. Yan, “Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks,†IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 11, pp. 5619–5629, Nov. 2018, doi: 10.1109/TNNLS.2018.2789927.

K. Lee, D. Liu, L. Perroud, R. Chavarriaga, and J. del R. Millán, “A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers,†Rob. Auton. Syst., vol. 90, pp. 15–23, 2017, doi: 10.1016/j.robot.2016.10.005.

Y. Chen, C. Dai, and W. Chen, “Cross-Comparison of EMG-to-Force Methods for Multi-DoF Finger Force Prediction Using One-DoF Training,†IEEE Access, vol. 8, pp. 13958–13968, 2020, doi: 10.1109/ACCESS.2020.2966007.

M. Sun, Z. Song, X. Jiang, J. Pan, and Y. Pang, “Learning Pooling for Convolutional Neural Network,†Neurocomputing, vol. 224, pp. 96–104, 2017, doi: 10.1016/j.neucom.2016.10.049.

S. H. Park, D. Lee, and S. G. Lee, “Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification,†IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 2, pp. 498–505, 2018, doi: 10.1109/TNSRE.2017.2757519.

G. Bressan, G. Cisotto, and G. R. Müller-putz, “Deep Learning-Based Classification of Fine Hand Movements from Low Frequency EEG,†pp. 1–14, 2021.

X. Yin and X. Liu, “Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition,†IEEE Trans. Image Process., vol. 27, no. 2, pp. 964–975, 2018, doi: 10.1109/TIP.2017.2765830.

K. Anam, S. Bukhori, F. S. Hanggara, and M. Pratama, “Subject-independent Classification on Brain-Computer Interface using Autonomous Deep Learning for finger movement recognition,†Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 447–450, 2020, doi: 10.1109/EMBC44109.2020.9175718.

W. W. Sakti, K. Anam, S. B. Utomo, B. Marhaenanto, and S. Nahela, “Artificial Intelligence IoT based EEG Application using Deep Learning for Movement Classification,†in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, Oct. 2021, pp. 192–196. doi: 10.23919/EECSI53397.2021.9624269.

M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, and W. Ding, “Automatic construction of multi-layer perceptron network from streaming examples,†Int. Conf. Inf. Knowl. Manag. Proc., pp. 1171–1180, 2019, doi: 10.1145/lp0678.

R. Widadi, B. A. Widodo, and D. Zulherman, “Klasifikasi Sinyal EEG pada Sistem BCI Pergerakan Jari Manusia Menggunakan Convolutional Neural Network,†Techno.Com, vol. 19, no. 4, pp. 459–467, 2020, doi: 10.33633/tc.v19i4.4119.

N. Shajil, S. Mohan, P. Srinivasan, J. Arivudaiyanambi, and A. Arasappan Murrugesan, “Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications,†J. Med. Biol. Eng., no. 0123456789, 2020, doi: 10.1007/s40846-020-00538-3.

N. Rashid, J. Iqbal, A. Javed, M. I. Tiwana, and U. S. Khan, “Design of Embedded System for Multivariate Classification of Finger and Thumb Movements Using EEG Signals for Control of Upper Limb Prosthesis,†Biomed Res. Int., vol. 2018, 2018, doi: 10.1155/2018/2695106.

Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Temporally constrained sparse group spatial patterns for motor imagery BCI,†IEEE Trans. Cybern., vol. 49, no. 9, pp. 3322–3332, 2019, doi: 10.1109/TCYB.2018.2841847.

T. jian Luo, C. le Zhou, and F. Chao, “Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network,†BMC Bioinformatics, vol. 19, no. 1, pp. 1–18, 2018, doi: 10.1186/s12859-018-2365-1.

L. Huang, D. Yang, B. Lang, and J. Deng, “Decorrelated batch normalization,†arXiv, pp. 791–800, 2018.

M. S. Bascil, “A New Approach on HCI Extracting Conscious Jaw Movements Based on EEG Signals Using Machine Learnings,†J. Med. Syst., vol. 42, no. 9, pp. 1–11, 2018, doi: 10.1007/s10916-018-1027-1.

A. Ashfahani and M. Pratama, “Autonomous deep learning: Continual learning approach for dynamic environments,†SIAM Int. Conf. Data Mining, SDM 2019, pp. 666–674, 2019, doi: 10.1137/1.9781611975673.75.

P. P. Angelov, X. Gu, and J. C. Principe, “Autonomous learning multimodel systems from data streams,†IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 2213–2224, 2018, doi: 10.1109/TFUZZ.2017.2769039.

A. M. Sinaga et al., “No 主観的å¥åº·æ„Ÿã‚’中心ã¨ã—ãŸåœ¨å®…高齢者ã«ãŠã‘ã‚‹ å¥åº·é–¢é€£æŒ‡æ¨™ã«é–¢ã™ã‚‹å…±åˆ†æ•£æ§‹é€ 分æžTitle,†IEEE Trans. Softw. Eng., vol. 24, no. 4, pp. 233–244, 2019, doi: 10.1145/1390630.1390641.

J. Muschelli, “ROC and AUC with a binary predictor: a potentially misleading metric,†arXiv, 2019, doi: 10.1007/s00357-019-09345-1.

W. Xie, A. Nagrani, J. S. Chung, and A. Zisserman, “Utterance-level Aggregation for Speaker Recognition in the Wild,†ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2019-May, pp. 5791–5795, 2019, doi: 10.1109/ICASSP.2019.8683120.

M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, and W. Ding, “Automatic construction of multi-layer perceptron network from streaming examples,†Int. Conf. Inf. Knowl. Manag. Proc., no. Il, pp. 1171–1180, 2019, doi: 10.1145/lp0678.

W. Abbas and N. A. Khan, “DeepMI: Deep Learning for Multiclass Motor Imagery Classification,†Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2018-July, pp. 219–222, 2018, doi: 10.1109/EMBC.2018.8512271.

L. Yao, Z. Fang, Y. Xiao, J. Hou, and Z. Fu, “An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine,†Energy, vol. 214, p. 118866, 2021, doi: 10.1016/j.energy.2020.118866.

R. Lq, W. Zlwk, and L. D. Huv, “Siddique, Fathma, Shadman Sakib, and Md Abu Bakr Siddique. ‘Recognition of handwritten digit using convolutional neural network in python with tensorflow and comparison of performance for various hidden layers.’ 2019 5th International Conference on Advancâ€.

Y. R. Tabar and U. Halici, “A novel deep learning approach for classification of {EEG} motor imagery signals,†J. Neural Eng., vol. 14, no. 1, p. 16003, Nov. 2016, doi: 10.1088/1741-2560/14/1/016003.

V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces,†J. Neural Eng., vol. 15, no. 5, p. 56013, 2018.

R. T. Schirrmeister et al., “Deep learning with convolutional neural networks for EEG decoding and visualization,†Hum. Brain Mapp., vol. 38, no. 11, pp. 5391–5420, 2017, doi: https://doi.org/10.1002/hbm.23730.

S. Umar, M. Alsulaiman, and G. Muhammad, “Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion,†Futur. Gener. Comput. Syst., vol. 101, pp. 542–554, 2019, doi: 10.1016/j.future.2019.06.027

Downloads

Published

2024-12-31