Prediksi Keterlambatan Pembayaran Mahasiswa untuk Mitigasi Risiko Cuti Menggunakan SVM Optimasi PSO

Authors

  • Hafis Nurdin Universitas Bina Sarana Informatika
  • Imam Nawawi
  • Anus Wuryanto
  • Dewi Yuliandari
  • Hari Sugiarto

DOI:

https://doi.org/10.26905/jasiek.v7i1.15483

Keywords:

Mahasiswa, Particle Swarm Optimization (PSO), Prediksi keterlambatan pembayaran, Support Vector Machine (SVM)

Abstract

Delayed tuition payments present challenges for higher education institutions, impacting both financial stability and students’ academic progress. This study proposes a predictive model using Support Vector Machine (SVM) optimized by Particle Swarm Optimization (PSO) to identify students at risk of payment delays. The dataset includes academic and social attributes. A dot kernel SVM was evaluated using 10-fold cross-validation. Results show that PSO optimization significantly improved model performance, particularly in recall, which increased from 36.10% to 65.51%, indicating better identification of delayed payment cases. The analysis also reveals that social factors, such as employment and academic status, strongly influence prediction outcomes. These findings highlight the potential of the SVM-PSO model as a decision-support tool for early intervention, enabling institutions to mitigate dropout risks and enhance financial planning. By leveraging this approach, universities can better support students while maintaining administrative efficiency and institutional sustainability.

Downloads

Download data is not yet available.

References

[1] Ridwansyah, M. Iqbal, H. Destiana, Sugiono, and A. Hamid, “Data Mining Berbasis Machine Learning Untuk Analitik Prediktif Dalam Kelulusan,” semanTIK, vol. 10, no. 2, pp. 1–10, 2024, doi: https://doi.org/10.55679/semantik.v10i2.67.

[2] A. H. Kahfi, T. Prihatin, Yudhistira, A. Sudradjat, and G. Wijaya, “The right steps towards graduation: nb-pso smart combination for student graduation prediction,” J. Tek. Inform., vol. 5, no. 2, pp. 607–614, 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.2.1889.

[3] Sumarna, I. Nawawi, Suhardjono, Hari Sugiarto, and D. Yuliandari, “Meningkatkan akurasi prediksi kelulusan mahasiswa menggunakan metode algoritma genetika,” J. Inform. Manaj. dan Komput., vol. 16, no. 2, 2024, doi: http://dx.doi.org/10.36723/juri.v16i2.706.

[4] W. Li, “Design of Financial Crisis Early Warning Model Based on PSO-SVM Algorithm,” Math. Probl. Eng., pp. 1–8, 2022, doi: https://doi.org/10.1155/2022/3241802.

[5] S. Anam, M. R. A. Putra, Z. Fitriah, I. Yanti, N. Hidayat, and D. M. Mahanani, “Health Claim Insurance Prediction Using Support Vector Machine With Particle Swarm Optimization,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 2, pp. 0797–0806, 2023, doi: 10.30598/barekengvol17iss2pp0797-0806.

[6] N. W. D. Ayuni, N. N. Lasmini, and K. C. Dewi, “Predicting financial distress of property and real estate companies using optimized support vector machine-particle swarm optimization (SVM-PSO),” Bull. Soc. Informatics Theory Appl., vol. 8, no. 1, pp. 97–106, 2024.

[7] W. Widayani and H. Harliana, “Analisis Support Vector Machine Untuk Pemberian Rekomendasi Penundaan Biaya Kuliah Mahasiswa,” J. Sains dan Inform., vol. 7, no. 1, pp. 20–27, 2021, doi: 10.34128/jsi.v7i1.268.

[8] N. Y. L. Gaol, “Prediksi Mahasiswa Berpotensi Non Aktif Menggunakan Data Mining dalam Decision Tree dan Algoritma C4.5,” J. Inf. Teknol., vol. 2, pp. 23–29, 2020, doi: 10.37034/jidt.v2i1.22.

[9] H. Nurdin, I. Carolina, R. L. Andharsaputri, A. Wuryanto, and Ridwansyah, “Forward Selection as a Feature Selection Method in the SVM Kernel for Student Graduation Data,” Sink. J. dan Penelit. Tek. Inform., vol. 8, no. October, pp. 2531–2537, 2024, doi: 10.33395/sinkron.v8i4.14172.

[10] M. J. Budiman and Fanny Jouke Doringin, “Penerapan algoritma c5.0 dalam memprediksi keterlambatan pembayaran biaya kuliah di unkriswina sumba,” J. Ilmu Komput. Revolusioner, vol. 8, no. 6, 2024.

[11] J. J. Purnama, H. M. Nawawi, S. Rosyida, Ridwansyah, and Risandar, “Klasifikasi Mahasiswa Her Berbasis Algortima Svm Dan Decision Tree,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1253–1260, 2020, doi: 10.25126/jtiik.202073080.

[12] A. Hamid and Ridwansyah, “Optimizing Heart Failure Detection : A Comparison between Naive Bayes and Particle Swarm Optimization,” Paradigma, vol. 26, no. 1, pp. 30–36, 2024, doi: https://doi.org/10.31294/p.v26i1.3284.

[13] B. Gunawan Sudarsono and A. Ulan Bani, “Prediksi Mahasiswa Berpotensi Berhenti Kuliah Secara Sepihak Menggunakan Data Mining Algoritma C4.5,” J. Sains Komput. Inform., vol. 4, no. 2, pp. 359–367, 2020, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/227.

[14] D. F. D. Putra, Y. Suhanda, and M. Susanti, “Sistem Informasi Prediksi Mahasiswa Putus Kuliah Menggunakan Metode Data Mining Dengan Algoritma Chaid,” J. Ilm. FIFO, vol. 13, no. 2, p. 133, 2021, doi: 10.22441/fifo.2021.v13i2.003.

[15] T. Azhima, Y. Siswa, and W. J. Pranoto, “Implementasi Seleksi Fitur Information Gain Ratio Pada Algoritma Random Forest Untuk Model Data Klasifikasi Pembayaran Kuliah,” Din. Inform., vol. 15, no. 1, pp. 41–49, 2023.

[16] T. Triase and S. Samsudin, “Implementasi Data Mining dalam Mengklasifikasikan UKT (Uang Kuliah Tunggal) pada UIN Sumatera Utara Medan,” J. Teknol. Inf., vol. 4, no. 2, pp. 370–376, 2020, doi: 10.36294/jurti.v4i2.1711.

[17] Yennimar, W. Leonardi, H. Weide, D. Cantona, and Gani Mores Hutagalung, “Comparison of data mining algorithms (random forest, C4.5, catboost) based on adaptive boosting in predicting diabetes mellitus,” J. Tek. Inform. C.I.T Medicom, vol. 16, no. 3, pp. 01–12, 2024, [Online]. Available: www.medikom.iocspublisher.orgjournalhomepage:www.medikom.iocspublisher.org.

[18] R. Ridwansyah, G. Wijaya, and J. J. Purnama, “Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students,” J. Pilar Nusa Mandiri, vol. 16, no. 1, pp. 53–58, 2020, doi: 10.33480/pilar.v16i1.1180.

Downloads

Published

2025-06-03

Issue

Section

Articles