Effect of Temperature on the Growth Rate of Carbon Nanotubes (CNTs) using Electrodeposition Method
Abstract
Electrodeposition is one of the carbon capture methods used to produce carbon nanotubes with temperature as one of the variable. The research aims to analyze the effect of temperature on the growth rate of carbon nanotubes of 723oC, 750oC, 800oC, 850oC and 900oC using X-Ray Diffraction (XRD) testing. Analyzing deposit morphology at the same temperature using Scanning Electron Microscope (SEM) testing. The results of research show that the most optimal growth rate for carbon nanotubes occurred at 750oC of 7,949 g cm-2 hours-1. At a temperature of 750oC, carbon deposits are easier than at 723oC because that’s the melting point of lithium carbonate and has not completely decomposed. The XRD test show that at 750oC is the highest peak at 2θ= 26.21o. The SEM test show that the optimal morphological structure formed occurs at a temperature variation of 750oC with a fibrous morphology and little impurity at the ends. The results of the CNT percentage using the Material Analysis Using Diffraction (MAUD) method show that the largest quantitative value of the CNT percentage occurs at a temperature of 800oC of 4.08%.
Keywords
Full Text:
PDFReferences
H. V. Ijije, R. C. Lawrence, and G. Z. Chen, ‘Carbon electrodeposition in molten salts: electrode reactions and applications’, RSC Adv., vol. 4, no. 67, pp. 35808–35817, Aug. 2014, doi: 10.1039/C4RA04629C.
K. O. Yoro and M. O. Daramola, ‘CO2 emission sources, greenhouse gases, and the global warming effect’, Adv. Carbon Capture, pp. 3–28, 2020, doi: 10.1016/B978-0-12-819657-1.00001-3.
J. Ren and S. Licht, ‘Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes’, Sci. Rep. 2016 61, vol. 6, no. 1, pp. 1–11, Jun. 2016, doi: 10.1038/srep27760.
A. Douglas, R. Carter, M. Li, and C. L. Pint, ‘Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening’, ACS Appl. Mater. Interfaces, vol. 10, no. 22, pp. 19010–19018, Jun. 2018, doi: 10.1021/ACSAMI.8B02834/SUPPL_FILE/AM8B02834_SI_001.PDF.
J. Ren, F. F. Li, J. Lau, L. González-Urbina, and S. Licht, ‘One-Pot Synthesis of Carbon Nanofibers from CO2’, Nano Lett., vol. 15, no. 9, pp. 6142–6148, Sep. 2015, doi: 10.1021/ACS.NANOLETT.5B02427/SUPPL_FILE/NL5B02427_SI_001.PDF.
Q. Pham et al., ‘Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications’, Phys. Status Solidi Appl. Mater., vol. 214, p. 1600852, Jul. 2017, doi: 10.1002/pssa.201600852.
D. Tang, H. Yin, X. Mao, W. Xiao, and D. H. Wang, ‘Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode’, Electrochimica Acta, vol. 114, pp. 567–573, 2013, doi: 10.1016/J.ELECTACTA.2013.10.109.
H. V. Ijije, C. Sun, and G. Z. Chen, ‘Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties’, Carbon, vol. 73, pp. 163–174, Jul. 2014, doi: 10.1016/J.CARBON.2014.02.052.
J. Ren, J. Lau, M. Lefler, and S. Licht, ‘The Minimum Electrolytic Energy Needed To Convert Carbon Dioxide to Carbon by Electrolysis in Carbonate Melts’, J. Phys. Chem. C, vol. 119, no. 41, pp. 23342–23349, Oct. 2015, doi: 10.1021/ACS.JPCC.5B07026.
S. Arcaro, F. A. Berutti, A. K. Alves, and C. P. Bergmann, ‘MWCNTs produced by electrolysis of molten carbonate: Characteristics of the cathodic products grown on galvanized steel and nickel chrome electrodes’, Appl. Surf. Sci., vol. 466, pp. 367–374, Feb. 2019, doi: 10.1016/J.APSUSC.2018.10.055.
D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, and P. Kalck, ‘Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor’, Carbon, vol. 40, no. 10, pp. 1799–1807, Aug. 2002, doi: 10.1016/S0008-6223(02)00057-X.
H. Hanaei, A. F. Razi, D. Radiah, and I. S. Ahamad, ‘Effects of Synthesis Reaction Temperature, Deposition Time and Catalyst on Yield of Carbon Nanotubes’, Asian J. Chem., vol. 24, no. 6, pp. 2407–2414, Jun. 2021.
A. I. Rasheed, ‘Effects of Temperature on Thermodynamic parameters and Carbon Nanotubes Growth Rate on Aluminum Electrode in Electrochemical deposition Process’, Ibn AL-Haitham J. Pure Appl. Sci., vol. 24, no. 1, Art. no. 1, 2011, Accessed: Aug. 30, 2024. [Online]. Available: https://jih.uobaghdad.edu.iq/index.php/j/article/view/795
Q. Chen, ‘Collective model of chiral and wobbling modes in nuclei’, Sci. Sin. Phys. Mech. Astron., vol. 46, no. 1, Jan. 2016, doi: 10.1360/SSPMA2015-00359.
A. Grzechnik, P. Bouvier, and L. Farina, ‘High-pressure structure of Li2CO3’, J. Solid State Chem., vol. 173, no. 1, pp. 13–19, Jun. 2003, doi: 10.1016/S0022-4596(03)00053-7.
T. Belin and F. Epron, ‘Characterization methods of carbon nanotubes: a review’, Mater. Sci. Eng. B, vol. 119, no. 2, pp. 105–118, May 2005, doi: 10.1016/J.MSEB.2005.02.046.
L. Hu, Y. Song, J. Ge, J. Zhu, Z. Han, and S. Jiao, ‘Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts’, J. Mater. Chem. A, vol. 5, no. 13, pp. 6219–6225, Mar. 2017, doi: 10.1039/C7TA00258K.
M. Briesemeister, J. Gómez, P. Bertemes-Filho, and S. Pezzin, PVC/CNT Electrospun Composites: Morphology, Thermal and Impedance Spectra. 2024. doi: 10.20944/preprints202407.1875.v1.
Y. Li et al., ‘Effect of carbon nanotube content and annealing temperature on corrosion performance of carbon nanotube/Ni composite layer’, Mater. Res. Express, vol. 11, no. 4, p. 046503, Apr. 2024, doi: 10.1088/2053-1591/ad3614.
DOI: https://doi.org/10.26905/jtmt.v20i2.13673
Refbacks
- There are currently no refbacks.
TRANSMISI Universitas Merdeka Malang Mailing Address: Jalan Terusan Dieng 62-64 Malang, 65146, East Java, Indonesia This work, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |