The Effect of Depth of Cut and Spindle Speed on Cutting Parallelism Results on Aluminum 6061 CNC TU-3A Retrofit Machine

Authors

  • Salindra Sakti Putra Santosa Department of Mechanical Engineering State Polytechnic of Malang
  • Imam Mashudi Department of Mechanical Engineering State Polytechnic of Malang

DOI:

https://doi.org/10.26905/jtmt.v20i2.13726

Keywords:

CNC, depth of cut, parallelism, retrofit, spindle speed

Abstract

Machining process is an important part of manufacturing to form and finish high-precision components. Milling is a commonly used technique, and the advancement of CNC technology has enabled precise and consistent production. This study evaluated the effect of spindle speed and depth of cut on the surface parallelism (µm) of aluminum 6061 using a TU-3A retrofit CNC milling machine. A quantitative experimental method with factorial design of experiments (DOE) was applied, testing spindle speeds of 600 RPM, 800 RPM, and 1000 RPM and depths of cut of 1.0 mm, 1.5 mm, and 2.0 mm, while maintaining constant feed rates of 48 mm/min, 64 mm/min, and 80 mm/min. The results showed that spindle speed had no significant impact on surface parallelism (µm) (P-value = 0.924), although higher speeds showed a trend of better results. In contrast, depth of cut significantly affects parallelism (µm) (P-value = 0.000), with greater depth improving surface quality (µm). In addition, the interaction between spindle speed and depth of cut is also significant (P-value = 0.002), indicating that the combination of higher spindle speed with lower depth of cut produces better results. These findings suggest optimal machining parameters to improve surface parallelism (µm) in aluminum milling operations.

Author Biographies

Salindra Sakti Putra Santosa, Department of Mechanical Engineering State Polytechnic of Malang

-

Imam Mashudi, Department of Mechanical Engineering State Polytechnic of Malang

-

References

R. Rahmatullah, A. Amiruddin, and S. Lubis, ‘Effectiveness of CNC Turning And CNC Milling in Machining Process’, Int. J. Econ. Technol. Soc. Sci. Injects, vol. 2, no. 2, pp. 575–583, Oct. 2021, doi: 10.53695/injects.v2i2.610.

A. Andoko et al., ‘Simulation on CNC 5 axis milling spindle bolt using finite element method’, presented at the AIP Conference Proceedings, 2020, pp. 040012–040012. doi: 10.1063/5.0015738.

A. W. Hermawan, ‘Pengaruh Kecepatan Putaran Spindle dan Kedalaman Pemakanan terhadap Tingkat Kerataan dan Kekasaran Permukaan Alumunium 6061 Pada Mesin Frais CNC Headman’, J. Tek. Mesin, vol. 3, no. 01, Jun. 2014, Accessed: Aug. 29, 2024. [Online]. Available: https://ejournal.unesa.ac.id

M. S. Hassan and A. M. Amin, ‘Optimisation of Surface Roughness in The Cnc Milling Process’, Res. Prog. Mech. Manuf. Eng., vol. 3, no. 1, Art. no. 1, Aug. 2022.

Y. Rammohan, S. N., and S. Mariyaiah, ‘Journal of Polymer & Composites Effect of Shock Waves on the Hardness of Graphene Reinforced Aluminium Composites’, J. Polym. Compos., vol. 8, pp. 32–38, Jan. 2020.

F. Sönmez, ‘The Effect of Feed and Depth of Cut Parameters on Surface Roughness and Chip Morphology in Stainless Steel Materials’, Eur. J. Tech., Jun. 2024, doi: 10.36222/ejt.1456172.

W. Tayier, ‘Enhancing Cnc Precision: A Review of Geometric Errors and Simulation Methods in Three-Axis CNC Systems’, J. Eng. Technol. Adv., vol. 9, pp. 55–74, Jul. 2024, doi: 10.35934/segi.v9i1.108.

D. Zariatin, ‘Analysis of Influence of Spindle Speed and Feeding Speed to Tool Wear and Surface Roughness’, J. Energy Mech. Mater. Manuf. Eng., vol. 1, Jul. 2017, doi: 10.22219/jemmme.v1i1.4480.

R. S. Raju, K. Kumar, K. Vargish, and M. Kumar, ‘Machine learning based surface roughness assessment via CNC spindle bearing vibration’, Int. J. Interact. Des. Manuf. IJIDeM, pp. 1–18, Jul. 2024, doi: 10.1007/s12008-024-01963-3.

R. Achadiah, P. Setyarini, M. Pambayoen, I. Djunaidi, and D. Azizah, ‘Effect of feed rate and depth of cut on face milling process on surface roughness of Al-Mg alloy using CNC milling machine 3 axis’, Tech. Romanian J. Appl. Sci. Technol., vol. 3, pp. 11–18, Dec. 2021, doi: 10.47577/technium.v3i11.5396.

I. Kaisan and R. Rusiyanto, ‘Pengaruh Parameter Pemotongan CNC Milling dalam Pembuatan Pocket terhadap Getaran dan Kekasaran Permukaan pada Crankcase Mesin Pemotong Rumput’, J. Rekayasa Mesin, vol. 11, no. 1, Art. no. 1, May 2020, doi: 10.21776/ub.jrm.2020.011.01.5.

D. Yang, C. Cao, and C. Ai, ‘Fault Diagnosis of the FANUC CNC Lathe Analog Spindle Speed Mismatch’, IOP Conf. Ser. Mater. Sci. Eng., vol. 688, p. 033089, Dec. 2019, doi: 10.1088/1757-899X/688/3/033089.

Y. Akiyama, M. Iwaki, Y. Komagamine, S. Minakuchi, and M. Kanazawa, ‘Effect of Spindle Speed and Feed Rate on Surface Roughness and Milling Duration in the Fabrication of Milled Complete Dentures: An In Vitro Study’, Appl. Sci., vol. 13, p. 13338, Dec. 2023, doi: 10.3390/app132413338.

S. Kumar and P. N. Rao, ‘Multi-Response Optimization of process Parameter in Vertical Milling Machine of EN 31 Using Taguchi Method’, J. Univ. Shanghai Sci. Technol., vol. 23, pp. 228–235, Nov. 2021, doi: 10.51201/JUSST/21/11890.

S. Sudjatmiko, S. Rudy, S. Agus, and A. C. Moch, ‘Correlation of surface roughness, tool wear, and chip slenderness ratio in the lathe process of aluminum alloy–6061’, ВоÑточно-ЕвропейÑкий Журнал Передовых Технологий, no. 4 (1), pp. 54–60, 2019.

H. Çalışkan, ‘Real-Time Milling Chatter Detection and Control with Axis Encoder Feedback and Spindle Speed Manipulation’, J. Manuf. Mater. Process., vol. 8, p. 173, Aug. 2024, doi: 10.3390/jmmp8040173.

Downloads

Published

2024-08-28