Karakteristik Nanopowder Manganese Oxide (MnO) Hasil Sintesis Sol-Gel

Muhammad Ilman Nur Sasongko


Phase and morphology characterization of powder Manganese Oxide (MnO) aims to reduce the grain size of micro sized MnO material into nano size using sol-gel method with sintering time variations. The results showed the phase changes in the MnO 30 minutes, 60 minutes and 90 minutes indicates the size of the crystal grains of 47,3.nm, 68.299 nm, and 84, 547 nm. (2) The change is significant, because the crystals MnO Raw at 143.44 nm. (3) Changes in the morphology shows a triangular Raw MnO after synthesis, transformed into spherical grains by agglomeration membranes MnO. The study has managed to change the grain size of micro sized MnO into nano.


Phase; Manganese Oxide; MnO; Sol-gel; Synthesis; Stirring time

Full Text:



B. K. Pandey, “Synthesis, optical properties and growth mechanism of MnO nano structures,” Appl. Surf. Sci., vol. 283, pp. 430–437, 2013.


X. Gu, “General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ino Battery Anodes,” Electrochim. Acta, vol. 184, pp. 250–256, 2015.

F. Gao, “Easy synthesis of MnO-graphene hybrids for high-performance lithium storage,” New Carbon Mater., vol. 29, no. 4, pp. 316–324, 2014.

Arikunto, “Metodelogi Penelitian, Suatu Pengantar Pendidikan,” in Rineka Cipta, Jakarta, 2019, p. 21.

A. Hajalilou, “A comparative study of in-situ mechanochemically synthesized Mn0.5Zn0.5Fe2O4 ferrite nanoparticles in the MnO/ZnO/Fe2O3 and MnO2/Zn/Fe2O3 systems,” Ceram. Int., vol. 41, pp. 8070–8079, 2015.

Q. Hao, “Synthesis of MnO/C composites trough a solid state reaction and their transformation into MnO2 nanorods,” J. Alloys Compd., vol. 509, pp. 6217–6221, 2011.

C.-C. Lin, “Facile synthesis of monodisperse MnO nanoparticles from bulk MnO,” J. Cryst. Growth, vol. 338, pp. 152–156, 2012.

R. Wu, “Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water.,” Water Res., vol. 39, no. 4, pp. 630–638, 2005.

X. Wu, “Mn2O3 doping induced the improvement of catalytic performance for oxygen reduction of MnO,” Int. J. Hydrogen Energy, vol. 41, no. 36, pp. 16087–16093, 2016.

J. Yang, “Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage,” Nano Energy, vol. 13, pp. 702–708, 2015.

P. Puspitasari, et al., “Nanocatalyst manganese oxide (MnO) for exhaust emissions (CO and HC) reduction Nanocatalyst manganese oxide (MnO) for exhaust emissions (CO and HC) reduction,” 2018, doi: 10.1088/1757-899X/432/1/012005.

DOI: https://doi.org/10.26905/jtmt.v18i1.8122


  • There are currently no refbacks.


University of Merdeka Malang

Mailing Address:

Jalan Terusan Dieng 62-64 Malang, 65146, East Java, Indonesia
Phone: 085107636279 Fax: (0341) 560836
Email: jm.transmisi@unmer.ac.id