Effect of Cathode Distance, Anode and Electroplating Time on Aluminum Alloy Corrosion Rate

Agus Dwi Putra, Dewi Izzatus Tsamroh, Yayi Febdia Pradani, Ratna Fajarwati Meditama, Ahmad Muflih

Abstract


Aluminum foil is used more often than actual aluminum in everyday life because aluminum is actually quite unstable and is not suitable for securing heavy containing objects. For car wheels, aluminum is mixed with manganese and then hardened to withstand the load. Using aluminum alloys requires an electroplating process to increase corrosion resistance, decorative value and friction resistance. The purpose of this study was to determine the properties of anodized cathode aluminum alloy and the required coating time. In this study, a quantitative experiment used 20 samples. The results showed that there were defects in the aluminum alloy lattice, but not too significant. Different corrosion rate values were shown using electrolysis periods of 30 minutes and 60 minutes combined with anode-cathode distances of 5 cm, 10 cm and 15 cm. The group with 30 minutes of coating time and 5 cm anode-cathode distance had the highest corrosion rate (0.853 mm/year), while the group with 30 minutes of coating time and 10 cm anode-cathode distance had the lowest corrosion rate (0.610). The group with 60 minutes of coating time and 10 cm distance between the anode and cathode had the highest corrosion rate of 1,564 mm/year, while the group with 60 minutes of coating time and 15 cm distance had the lowest corrosion rate. The anode-cathode distance partially affects the corrosion rate of aluminum alloy electroplating. The smaller the distance between the anode and cathode, the higher the corrosion rate of the aluminum alloy. The longer the coating lasts, the higher the corrosive rate of the Al alloy.

Keywords


Aluminum alloy; Electroplating; Anode, Cathode

Full Text:

PDF

References


Referensi

L. P. Edy, “Pengaruh Konsentrasi Larutan Electroplating Terhadap Kekerasan Dan Kekasaran Lapisan Nikel Pada Baja St40 Menggunakan,” 2014.

E. Triyono, S. Setyowati Rahayu, V. Siti Anggraini Budiarti, B. Sumiyarso, J. Teknik Elektro Politeknik Negeri Semarang, and J. Teknik Mesin Politeknik Negeri Semarang, “Penerapan Teknologi Elektroplating pada Industri Kecil Knalpot di Purbalingga,” J. DIANMAS, vol. 8, no. 2, pp. 101–106, 2019.

C. Manurung, “Pengaruh Kuat Arus Terhadap Ketebalan Lapisan Dan Laju Korosi (Mpy) Hasil Elektroplating Baja Karbon Rendah Dengan Pelapis Nikel,” Visi, vol. 21, no. 2, pp. 1857–1869, 2014, [Online]. Available: Pengaruh Kuat Arus Terhadap Ketebalan Lapisan Dan Laju Korosi (Mpy)%0AHasil Elektroplating Baja Karbon Rendah Dengan Pelapis Nikel%0ACharles Manurung, ST.,MT.

A. P. Sandi, E. G. Suka, and Y. I. Supriyatna, “Pengaruh Waktu Elektroplating Terhadap Laju Korosi Baja AISI 1020 Dalam Medium Korosif NaCl 3%,” J. Teor. dan Apl. Fis., vol. 05, no. 02, pp. 205–212, 2017.

V. M. Pratiwi, Sulistijono, I. P. Hidayat, and H. Zuniandra, “Pengaruh Variasi Waktu dan Temperatur Kekuatan Lekat dan Ketahanan Korosi pada Baja,” J. Tek. ITS, vol. 8, no. 2, pp. 218–223, 2019.

A. Rasyad and B. Budiarto, “Analisis Pengaruh Temperatur, Waktu, dan Kuat Arus Proses Elektroplating terhadap Kekuatan Tarik, Kekuatan Tekuk dan Kekerasan pada Baja Karbon Rendah,” J. Rekayasa Mesin, vol. 9, no. 3, pp. 173–182, 2018, doi: 10.21776/ub.jrm.2018.009.03.4.

S. Pani, “PENGARUH VARIASI KUAT ARUS LISTRIK DAN WAKTU ELECTROPLATING NICKEL-CHROME TERHADAP KETEBALAN LAPISAN PADA PERMUKAAN L A N D A S A N T E O RI A . Prinsip Dasar Electroplating Ahmad , 2011 . Prinsip dasar dari proses lapis listrik berpedoman atau berdasarka,” vol. 2, no. 1, pp. 18–25, 2018.

G. F. David, V. H. Perez, O. R. Justo, D. C. Cubides, C. A. Cardona, and J. Hristov, “Glycerol bioconversion in unconventional magnetically assisted bioreactor seeking whole cell biocatalyst (intracellular lipase) production,” Chem. Eng. Res. Des., vol. 111, pp. 243–252, 2016, doi: 10.1016/j.cherd.2016.05.011.

Andoko and P. Puspitasari, “Finite element analysis of surface tension on piston due to pressure variation,” AIP Conf. Proc., vol. 1778, 2016, doi: 10.1063/1.4965798.

Y. Song, D. Shan, and E. H. Han, “Pitting corrosion of a Rare Earth Mg alloy GW93,” J. Mater. Sci. Technol., vol. 33, no. 9, pp. 954–960, 2017, doi: 10.1016/j.jmst.2017.01.014.

B. Zhang, C. Tao, and C. Liu, “Cracking analysis on joint lug of aluminum alloy framework of an airplane,” Eng. Fail. Anal., vol. 35, pp. 82–87, 2013, doi: 10.1016/j.engfailanal.2012.11.014.

F. Amalia, “Karakterisasi Struktur Mikro Komposit Al-ZrSiO 4 dengan Scanning Electron Microscopy ( SEM ) dan X-Ray Diffraction ( XRD ),” no. April, pp. 200–203, 2015.

D. Vl and V. Buchta, “Randomized loading sequence for L 410 airplane,” vol. 101, pp. 524–533, 2015, doi: 10.1016/j.proeng.2015.02.063.




DOI: https://doi.org/10.26905/jtmt.v19i1.9572

Refbacks

  • There are currently no refbacks.


TRANSMISI

Universitas Merdeka Malang

Mailing Address:

Jalan Terusan Dieng 62-64 Malang, 65146, East Java, Indonesia
Phone: 081333961913 Fax: (0341) 560836
Email: jm.transmisi@unmer.ac.id