Evaluation of Fluid Flow Velocity Variations on the Plate Heat Exchanger Performance

Authors

  • Andika Syahputra Department of Mechanical Engineering, Universitas Malikussaleh
  • Asnawi Asnawi Department of Mechanical Engineering, Universitas Malikussaleh
  • Ahmad Nayan Department of Mechanical Engineering, Universitas Malikussaleh
  • Alchalil Alchalil Department of Mechanical Engineering, Universitas Malikussaleh
  • Nurul Islami Department of Mechanical Engineering, Universitas Malikussaleh

DOI:

https://doi.org/10.26905/jtmt.v19i1.9650

Keywords:

Velocity, cold fluid, plate heat exchanger, heat exchanger performance

Abstract

Heat exchanger expected to high effectiveness of heat transfer. Type of plate heat exchanger was more efficient compare to another heat exchangers in industrial applications with pressure less than 30 bar. The increased velocity of cold fluid flow has an impact to increase the performance of heat exchanger by  heat transfer rate (Q), heat transfer coefficient (U), and the effectiveness of heat exchanger (ε). The increased velocity of cold fluid flow also incresing the heat transfer rate. The study carried out by variation of the cold fluid velocity at 0.03 m/s, 0.037 m/s, 0.045 m/s, 0.051 m/s and 0.059 m/s. Inlet hot fluid temperature (Th,i) at 45°C and cold fluid temperature (Tc,i) at 27°C constant. The results shows Q value from the original 1570.71 Watt to 1916.16 Watt on the hot side and 1751.89 Watt to 2187.01 Watt on the cold side. The U value from the original 1180.46 W/m2.°C becomes 1408,75 W/m2. °C. The ε value increased from 60.33% to 75.69%. The increasing of  cold fluid velocity directly proportional to the the heat transfer rate (Q) and performance of the plate heat exchanger. This Phenomenon due to the faster circulation of the cold fluid, which causes the cold fluid to quickly return to its initial temperature (Th,i), an than increasing the plate heat exchanger's performance.

References

J. Ronald and N. Jose Roberto, “Numerical Prediction of a Nusselt Number Equation for Stirred Tanks with Helical Coils,†AIChE J., vol. 59, no. 4, pp. 215–228, 2012, doi: 10.1002/aic.

M. R. Zain and Asalil Mustain, “Evaluasi Efisiensi Heat Exchanger (He - 4000) Dengan Metode Kern,†Distilat J. Teknol. Separasi, vol. 6, no. 2, pp. 415–421, 2020, doi: 10.33795/distilat.v6i2.133.

S. Nandiati, M. R. Kirom, and T. A. Ajiwiguna, “Evaluasi Kinerja Pada Berbagai Variasi Susunan Heat Exchanger Menggunakan Metode LMTD Dan NTU,†e-Proceeding Eng., vol. 6, no. 2, pp. 5058–5065, 2019.

H. M. Ma’ruf, “Perpindahan Panas Pada Permukaan Luar Pipa Dengan Aliran Fluida Tegak Lurus Sumbu Pipa Yang Disusun Secara Zizag/Staggered,†2007.

R. Walikrom, A. Muin, and Hermanto, “Studi Kinerja Plate Heat Exchanger Pada Sistem Pendingin Pltgu,†J. Tek. Mesin, vol. 1, no. 1, 2018, [Online].

Y. A. Cengel, Heat and Mass Transfer: A Practical Approach. Singapura: :Mc.Graw-Hill Book., 2006.

L. Wang, B. Sundeen, and R. M. Manglik, Plate heat exchangers : design, applications and performance. 2007.

A. D. Cappenberg, “Analisa Kinerja Alat Penukar Kalor Jenis Pipa Ganda,†J. Kaji. Tek. Mesin, vol. 1, 2016, doi: 10.52447/jktm.v1i2.459.

J. E. Hesselgreaves, Compact Heat Exchanger Selection, Design and operation, no. January. lanark: Elsevier Science dan Technology Books, 2001.

Downloads

Published

2023-03-15