APLIKASI PENGELOMPOKAN PELANGGAN PADA UMS STORE MENGGUNAKAN ALGORITMA K-MEANS

MUHAMMAD ABDUL GHOFAR, YOGIEK INDRA KURNIAWAN

Abstract


UMS Store is an official trading business unit owned by Muhammadiyah University of Surakarta that provides various categories of books, journals, office stationery and official marchandise. UMS Store is also a voucher exchange center for students. Of the many voucher redemption transactions and cash purchases, UMS Store has abundant data and will continue to grow over time. The abundant data if left unchecked would be a pile of only stored data. Actually, if the data is excavated will produce valuable information. UMS Store need a customer grouping application that will be used to provide continuous treatment such as giving discounts or vouchers to their best customers. This research is done to create the application, where application can make customer grouping with UMS Store data and can give recommendation through potential group that formed. This application was developed by utilizing K-means algorithm, which is one of clustering method in data mining technique. Groupings made in the application are limited to 3 large groups of data with restrictions using only student data using UMS Store vouchers. Variables used consist of NIM, year force, discount, sub total, total paid, total item and date.The results of this study is an application used to classify customers using K-means method. The results of this study indicate that if the application is used to create three groups, it will form three clusters, ie clusters of potential customers, normal customers and unlikely customer clusters.

 


Keywords


Clustering, Data Mining, K-Means, UMS Store

References


Bahar, A., Pramono, B., & Sagala, L. H. (2016). Penentuan Strategi Penjualan Alat-Alat Tattoo di Studio Sonyxtattoo Menggunakan Metode K-Means Clustering. Semantik, 2(2), 75-86.

Ezenkwu, C. P., Ozuomba, S., & Kalu, C. (2015). Application of K-Means Algorithm for Efficient Customer Segmentation: A Strategy for Targeted Customer Services. IJARAI, 4(10), 40-44. doi:10.14569/IJARAI.2015.041007

Handoko, K. (2016). Penerapan Data Mining dalam Meningkatkan Mutu Pembelajaran pada Instansi Perguruan Tinggi Menggunakan Metode K-Means Clustering (Studi Kasus di Program Studi TKJ Akademi Komunitas Solok Selatan). TEKNOSI, 02(3), 31-40. doi:https://doi.org/10.25077/TEKNOSI.v2i3.2016.31-40

Jain, N., & Ahuja, V. (2014). Segmenting Online Consumers Using K-means Cluster Analysis. International Journal of Logistics Economics and Globalisation, 6(2), 161-178. doi:https://doi.org/10.1504/IJLEG.2014.068274

Khandre, A., & Alvi, A. S. (2016). Efficient Clustering Algorithm with Improved Clusters Quality. IOSR-JCE, 18(6), 15-19. doi:10.9790/0661-1806051519

Kurniawan, Y. I., & Windisani, P. A. (2017). Sistem Pendukung Keputusan untuk Penentuan Kelolosan Beasiswa Sekolah Menengah Kejuruan (SMK) Menggunakan Metode Fuzzy . Jurnal Teknik Elektro, 9(1).

Lanjewar, R., & Yadav, O. P. (2013). Understanding of Customer Profiling and Segmentation Using K-Means Clustering Method for Raipur Sahkari Dugdh Sangh Milk Products. IJRCCT, 2(3), 103-107.

Nugroho, Y. S., & Haryati, S. N. (2015). Klasifikasi dan Klastering Penjurusan SMA Negeri 3 Boyolali. Khazanah Informatika, 1(1), 1-6. doi:https://doi.org/10.23917/khif.v1i1.1175

Prabiantissa, C. N., Ririd, A. R., & Asmara, R. A. (2017). Sistem Identifikasi Batik Alami dan Batik Sintetis Berdasarkan Karakteristik Warna Citra dengan Metode K-Means Clustering. Jurnal Informatika Polinema, 5(2), 26-31.

Sumadikarta, I., & Abeiza, E. (2016). Penerapan Algoritma K=Means pada Data Mining Untuk Memilih Produk dan Pelanggan Potensial (Studi Kasus : PT Mega Arvia Utama). Jurnal Satya Informatika, 1(1), 12-22.

Tikmani, J., Tiwari, S., & Khedkar, S. (2015). An Approach To Consumer Classification Using K-Means. IJIRCCE, 3(11), 10542-10549. doi:10.15680/IJIRCCE.2015.0311029


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.