Effect of Electrodeposition Time on the Growth Rate of Carbon Nanotubes (CNTs)
Abstract
Keywords
Full Text:
PDFReferences
A. Andoko, “The effects of strain amplitude and low cycle fatigue (LCF) behavior on nodular cast iron with two-step austempering (TSA) process,” Materials Research Express, vol. 6, no. 9, p. 095705, Aug. 2019, doi: 10.1088/2053-1591/ab32be.
A. Andoko, “The effects of strain amplitude and low cycle fatigue (LCF) behavior on nodular cast iron with two-step austempering (TSA) process,” Materials Research Express, vol. 6, no. 9, p. 095705, Aug. 2019, doi: 10.1088/2053-1591/ab32be.
K. Saeed and I. Khan, “Carbon nanotubes-properties and applications: a review,” Carbon letters, vol. 14, no. 3, pp. 131–144, 2013, doi: 10.5714/cl.2013.14.3.131.
F. A. Noor, L. L. Zaenufar, Yulkifli, M. Abdullah, Sukirno, and Khairurrijal, “Kajian Pembuatan Nanotube Karbon dengan Menggunakan Metode Spray Pyrolysis,” Nanosains dan Nanoteknologi, vol. 2, pp. 15–20, 2016.
S. Marwati, “Pengaruh Agen Pereduksi Dalam Proses Elektrodeposisi,” pp. 1–8, 2013.
H. V. Ijije, C. Sun, and G. Z. Chen, “Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties,” Carbon, vol. 73, pp. 163–174, 2014, doi: 10.1016/j.carbon.2014.02.052.
S. Hayati and Y. Kurniasih, “Pengaruh Jenis Bahan Elektroda Terhadap Elektrodeposisi Perak dari Limbah Fotorontgen Efisiensi The Effect of Types Materials Electrode on the Efficiency of Silver Electrodeposition from Waste Photorontgen,” pp. 210–215, 2020.
S. Arcaro, F. A. Berutti, A. K. Alves, and C. P. Bergmann, “MWCNTs produced by electrolysis of molten carbonate: Characteristics of the cathodic products grown on galvanized steel and nickel chrome electrodes,” Applied Surface Science, vol. 466, no. April 2018, pp. 367–374, 2019, doi: 10.1016/j.apsusc.2018.10.055.
H. Hengameh, A. Fakhru’l-razi, dayang radiah awang Biak, intan salwani Ahamad, and F. Danafar, “Effects of Synthesis Reaction Temperature , Deposition Time and Catalyst on Yield of Carbon Nanotubes,” vol. 24, no. 6, pp. 2407–2414, 2012.
A. Douglas, R. Carter, M. Li, and C. L. Pint, “Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening,” ACS Applied Materials and Interfaces, vol. 10, no. 22, pp. 19010–19018, 2018, doi: 10.1021/acsami.8b02834.
C. A. Dewi and A. Ahmadi, “Pengaruh Waktu Pada Elektroplating Krom Dekoratif Dengan Logam Basis Tembaga Terhadap Laju Korosi,” Hydrogen: Jurnal Kependidikan Kimia, vol. 1, no. 2, p. 107, 2013, doi: 10.33394/hjkk.v1i2.632.
A. F. Alphanoda, “Pengaruh Jarak Anoda-Katoda dan Durasi Pelapisan Terhadap Laju Korosi pada Hasil Electroplating Hard Chrome,” Jurnal Teknologi Rekayasa, vol. 1, no. 1, p. 1, 2017, doi: 10.31544/jtera.v1.i1.2016.1-6.
L. A. N. Wibawa, W. Raharjo, and B. Kusharjanta, “Pengaruh Variasi Tegangan dan Waktu Pelapisan pada Proses Elektroplating Baja Karbon Rendah dengan Pelapis Seng terhadap Ketebalan dan Laju Deposit,” no. April, pp. 1–8, 2013, doi: 10.13140/RG.2.2.23230.54089/1.
J. P. Tessonnier et al., “Analysis of the structure and chemical properties of some commercial carbon nanostructures,” Carbon, vol. 47, no. 7, pp. 1779–1798, 2009, doi: 10.1016/j.carbon.2009.02.032.
T. Belin and F. Epron, “Characterization methods of carbon nanotubes: A review,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 119, no. 2, pp. 105–118, 2005, doi: 10.1016/j.mseb.2005.02.046.
DOI: https://doi.org/10.26905/jtmt.v20i2.13672
Refbacks
- There are currently no refbacks.
TRANSMISI Universitas Merdeka Malang Mailing Address: Jalan Terusan Dieng 62-64 Malang, 65146, East Java, Indonesia This work, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |