Fine tuning model Convolutional Neural Network EfficientNet-B4 dengan augmentasi data untuk klasifikasi penyakit kakao

Akbar Ganang Pradana, De Rosal Ignatius Moses Setiadi, Ahmad Rofiqul Muslikh

Abstract


Cocoa is an important agricultural commodity in Indonesia which contributes to the economy with a production share of 15.68%. Cocoa diseases, such as Black Pod Rot and Pod Borer, are very detrimental to farmers. So it is necessary to build a recognition model that can classify automatically with high performance. Unfortunately the collected dataset is very unbalanced, and this is an additional challenge as it can reduce recognition performance. This study proposes disease recognition in cocoa images using the EfficientNet-B4 Convolutional Neural Network (CNN) model with fine-tuning. In this study also used seven kinds of data augmentation. The result is that the proposed CNN model has a high accuracy of 97.3% which is an increase of about 7.4% compared to the original model, at relatively few epochs. In addition, the proposed model is compared with other CNN models such as Xception, InceptionV3, ResNet, DenseNet, and EfficientNet, using the same approach, namely fine-tuning and epoch. The result is that the proposed method is superior to other models. This confirms that the proposed CNN model can also work better on unbalanced data.

Keywords


Convolutional Neural Network; EfficientNet-B4; fine-tuning; image classification; image recognition

Full Text:

PDF

References


N. A. Nor Muhammad et al., “Data on RNA-seq analysis of the cocoa pod borer pest Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillariidae),” Data Br., vol. 34, p. 106638, Feb. 2021, doi: 10.1016/j.dib.2020.106638.

J. B. Mbarga et al., “Field testing an oil-based Trichoderma asperellum formulation for the biological control of cacao black pod disease, caused by Phytophthora megakarya,” Crop Prot., vol. 132, p. 105134, Jun. 2020, doi: 10.1016/j.cropro.2020.105134.

S. B. Imanulloh, A. R. Muslikh, and D. R. I. M. Setiadi, “Plant Diseases Classification based Leaves Image using Convolutional Neural Network,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 1–10, Aug. 2023, doi: 10.33633/jcta.v1i1.8877.

M. Rahimzadeh and A. Attar, “A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2,” Informatics Med. Unlocked, vol. 19, p. 100360, 2020, doi: 10.1016/j.imu.2020.100360.

S. Albahli, N. Ayub, and M. Shiraz, “Coronavirus disease (COVID-19) detection using X-ray images and enhanced DenseNet,” Appl. Soft Comput., vol. 110, p. 107645, Oct. 2021, doi: 10.1016/j.asoc.2021.107645.

K. Joshi, V. Tripathi, C. Bose, and C. Bhardwaj, “Robust Sports Image Classification Using InceptionV3 and Neural Networks,” Procedia Comput. Sci., vol. 167, pp. 2374–2381, Jan. 2020, doi: 10.1016/j.procs.2020.03.290.

P. Zhang, L. Yang, and D. Li, “EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment,” Comput. Electron. Agric., vol. 176, p. 105652, Sep. 2020, doi: 10.1016/j.compag.2020.105652.

K. Ali, Z. A. Shaikh, A. A. Khan, and A. A. Laghari, “Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer,” Neurosci. Informatics, vol. 2, no. 4, p. 100034, Dec. 2022, doi: 10.1016/j.neuri.2021.100034.

F. Pérez-García, R. Sparks, and S. Ourselin, “TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning,” Comput. Methods Programs Biomed., vol. 208, p. 106236, Sep. 2021, doi: 10.1016/j.cmpb.2021.106236.

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” May 2019, [Online]. Available: http://arxiv.org/abs/1905.11946

A. P. Wibowo and D. R. I. M. Setiadi, “Performance Analysis of Deep Learning Models for Sweet Potato Image Recognition,” in 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), Sep. 2022, pp. 101–106. doi: 10.1109/iSemantic55962.2022.9920423.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, Feb. 2018, doi: 10.2200/S00822ED1V01Y201712COV015.

V. R. Kamath, V. S, and V. M, “Transferred Fusion Learning using Skipped Networks,” Nov. 2020, [Online]. Available: http://arxiv.org/abs/2011.05895

Y. Li, K. He, D. Xu, and D. Luo, “A transfer learning method using speech data as the source domain for micro-Doppler classification tasks,” Knowledge-Based Syst., vol. 209, p. 106449, Dec. 2020, doi: 10.1016/j.knosys.2020.106449.

J. Yang, Y. Xu, H. Cao, H. Zou, and L. Xie, “Deep learning and transfer learning for device-free human activity recognition: A survey,” J. Autom. Intell., vol. 1, no. 1, p. 100007, 2022, doi: 10.1016/j.jai.2022.100007.

M. Canayaz, “C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet,” Chaos, Solitons & Fractals, vol. 151, p. 111310, Oct. 2021, doi: 10.1016/j.chaos.2021.111310.

A. Shamila Ebenezer, S. Deepa Kanmani, M. Sivakumar, and S. Jeba Priya, “Effect of image transformation on EfficientNet model for COVID-19 CT image classification,” Mater. Today Proc., vol. 51, pp. 2512–2519, 2022, doi: 10.1016/j.matpr.2021.12.121.

L. Yang et al., “A dual attention network based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture,” Comput. Electron. Agric., vol. 187, p. 106316, Aug. 2021, doi: 10.1016/j.compag.2021.106316.

S. Salian and D. Sawarkar, “Melanoma Skin Lesion Classification using Improved EfficientNetB3,” Jordanian J. Comput. Inf. Technol., vol. 08, no. 01, p. 1, 2022, doi: 10.5455/jjcit.71-1636005929.

B. Li, O. K. Ersoy, C. Ma, Z. Pan, W. Wen, and Z. Song, “A 4F optical diffuser system with spatial light modulators for image data augmentation,” Opt. Commun., vol. 488, p. 126859, Jun. 2021, doi: 10.1016/j.optcom.2021.126859.

G. Jang, J. Lee, J.-G. Lee, and Y. Liu, “Distributed fine-tuning of CNNs for image retrieval on multiple mobile devices,” Pervasive Mob. Comput., vol. 64, p. 101134, Apr. 2020, doi: 10.1016/j.pmcj.2020.101134.

“Dense layer.” https://keras.io/api/layers/core_layers/dense/ (accessed Dec. 12, 2023).

M. Agarwal, S. Gupta, and K. K. Biswas, “A new Conv2D model with modified ReLU activation function for identification of disease type and severity in cucumber plant,” Sustain. Comput. Informatics Syst., vol. 30, p. 100473, Jun. 2021, doi: 10.1016/j.suscom.2020.100473.

P. Singh, P. Raj, and V. P. Namboodiri, “EDS pooling layer,” Image Vis. Comput., vol. 98, p. 103923, Jun. 2020, doi: 10.1016/j.imavis.2020.103923.

I. Rodriguez-Martinez, J. Lafuente, R. H. N. Santiago, G. P. Dimuro, F. Herrera, and H. Bustince, “Replacing pooling functions in Convolutional Neural Networks by linear combinations of increasing functions,” Neural Networks, vol. 152, pp. 380–393, Aug. 2022, doi: 10.1016/j.neunet.2022.04.028.

M. S. Sunarjo and H. Gan, “High-Performance Convolutional Neural Network Model to Identify COVID-19 in Medical Images,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 19–30, Aug. 2023, doi: 10.33633/jcta.v1i1.8936.

K. R. Prilianti, T. H. P. Brotosudarmo, S. Anam, and A. Suryanto, “Performance comparison of the convolutional neural network optimizer for photosynthetic pigments prediction on plant digital image,” 2019, p. 020020. doi: 10.1063/1.5094284.

A. Susanto, I. U. Wahyu Mulyono, C. Atika Sari, E. Hari Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES Int. J. Artif. Intell., vol. 12, no. 3, p. 1448, Sep. 2023, doi: 10.11591/ijai.v12.i3.pp1448-1458.

H. T. Adityawan, O. Farroq, S. Santosa, H. M. M. Islam, M. K. Sarker, and D. R. I. M. Setiadi, “Butterflies Recognition using Enhanced Transfer Learning and Data Augmentation,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 115–128, Nov. 2023, doi: 10.33633/jcta.v1i2.9443.

F. Mustofa, A. N. Safriandono, and A. R. Muslikh, “Dataset and Feature Analysis for Diabetes Mellitus Classification using Random Forest,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 41–48, Sep. 2023, doi: 10.33633/jcta.v1i1.9190.




DOI: https://doi.org/10.26905/jisad.v2i1.11899

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Information System and Application Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by

width="150"

Tools

Turnitin

crossref

Mendeley


Department of Information System, Faculty of Information Technology

Published by University of Merdeka Malang

Address: Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146,

Phone: (+62341) 566462

Email: jisad@unmer.ac.id

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.