Penerapan K-NN untuk mengklasifikasi status gizi balita di Pos Kesehatan Desa Rongga Koe

Authors

  • Rahmatina Hidayati Faculty of Information Technology, Universitas Merdeka Malang
  • Anita
  • Sri Lestanti

DOI:

https://doi.org/10.26905/jisad.v3i1.15393

Abstract

Toddler nutritional status is an important indicator in assessing the level of public welfare and health. At Rongga Koe Village Health Post, determining nutritional status is still done manually, so it takes a long time and is prone to errors. This study aims to develop a classification system for toddler nutritional status using the K-Nearest Neighbors (k-NN). The data used was 100 samples with five parameters: gender, age, weight, height, and upper arm circumference. The classification process was carried out with variations in the ratio of training and testing data (90:10, 80:20, 70:30, 60:40), as well as the k value and distance calculation method (Euclidean, Manhattan, Chebyshev, Mahalanobis). The results showed that the best combination was obtained at a ratio of 90:10 and a k value = 9 with the Mahalanobis Distance method, which achieved the highest accuracy of 85.7%. This study proves that the K-NN method is effective in helping to classify nutritional status digitally and more efficiently.

Downloads

Download data is not yet available.

References

[1] W. Wahyudi, “Optimasi Klasifikasi Status Gizi Balita Berdasarkan Indeks Antropometri Menggunakan Algoritma C4.5 Adaboost Classification,” Jurnal Ilmiah Komputerisasi Akuntansi, vol. 12, no. 2, 2019.

[2] E. Ramon, A. Nazir, N. Novriyanto, Y. Yusra, and L. Oktavia, “Klasifikasi Status Gizi Bayi Posyandu Kecamatan Bangun Purba Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 2, 2022, doi: 10.47080/simika.v5i2.2185.

[3] Kementrian Kesehatan RI Direktorat Jendral Bina Gizi dan Kesehatan Ibu danTentang Standar Antropometri Penilaian Status Gizi dan Anak, “Keputusan Menteri Kesehatan Republik Indonesia Nomor:1995/MENKES/SK/XII/2010 Tentang Standar Antropometri Penilaian Status Gizi Anak,” 2011.

[4] H. Saleh, M. Faisal, and R. I. Musa, “Klasifikasi Status Gizi Balita Menggunakan Metode K-Nearest Neighbor,” Simtek : jurnal sistem informasi dan teknik komputer, vol. 4, no. 2, 2019, doi: 10.51876/simtek.v4i2.60.

[5] H. Hafizan and A. N. Putri, “Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun,” KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 1, no. 2, 2020, doi: 10.30645/kesatria.v1i2.23.

[6] S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, 2022, doi: 10.30865/mib.v6i1.3312.

[7] R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, 2022, doi: 10.30865/mib.v6i2.3566.

[8] A. Fitri, N. Azizah, and V. P. Ramadhan, “Komparasi Naïve Bayes dan K-NN Dalam Analisis Sentimen di Twitter Terhadap Kemenangan Paslon 02,” J-INTECH (Journal of Information and Technology), vol. 12, no. 2, pp. 228–237, 2024, [Online]. Available: https://snatika.stiki.ac.id/J-INTECH/article/view/1305

[9] R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,” Techno.Com, vol. 20, no. 2, 2021, doi: 10.33633/tc.v20i2.4556.

[10] F. A. I. A. Putra, A. G. Sulaksono, L. T. Utomo, and A. R. Khamdani, “Klasifikasi Buah dan Sayur Menggunakan Fitur Ekstraksi HOG dan Metode KNN,” Jurnal Informatika Polinema, vol. 10, no. 1, 2023, doi: 10.33795/jip.v10i1.1433.

[11] N. Istiana and A. Mustafiril, “Perbandingan Metode Klasifikasi pada Data dengan Imbalance Class dan Missing Value,” Jurnal Informatika, vol. 10, no. 2, 2023, doi: 10.31294/inf.v10i2.15540.

[12] A. T. Akbar, N. Yudistira, and A. Ridok, “Identifikasi Gagal Ginjal Kronis dengan Mengimplementasikan Metode Support Vector Machine beserta K-Nearest Neighbour (SVM-KNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, 2023, doi: 10.25126/jtiik.20231026059.

[13] H. R. Ngemba et al., “Penerapan Algoritma K-Nearest Neighbor untuk Menentukan Potensi Ekspor Komoditas Pertanian di Provinsi Sulawesi Tengah,” Jurnal Teknologi dan Manajemen Informatika, vol. 9, no. 2, 2023, doi: 10.26905/jtmi.v9i2.10235.

[14] R. A. Safitri and R. Hidayati, “Komparasi Metode K-Nearest Neighbor dan Naïve Bayes untuk Mengklasifikasi Resiko Diabetes Di Posbindu Desa Bulupitu,” SMATIKA JURNAL, vol. 14, no. 02, pp. 297–303, Dec. 2024, doi: 10.32664/smatika.v14i02.1350.

[15] T. Kantacarini, D. E. Herwindiati, and J. Hendryli, “Kinerja Metode Mahalanobis Distance yang Dibentuk dari Dua Ukuran Pusat dan Dua Dispersi Multivariat,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 9, no. 1, 2021, doi: 10.24912/jiksi.v9i1.12667.

Published

2025-04-21

Issue

Section

Articles