Evaluation of distance measurement techniques in the k-NN method for toddler nutritional status classification

Authors

  • Rahmatina Hidayati Universitas Merdeka Malang
  • Anita Universitas Merdeka Malang
  • Sri Lestanti Universitas Islam Balitar

DOI:

https://doi.org/10.26905/jisad.v3i1.15393

Keywords:

toddler, classification, k-Nearest Neighbors, nutritional status

Abstract

Toddler nutritional status is an essential indicator in assessing public welfare and health. At Rongga Koe Village Health Post, determining nutritional status is still done manually, so it takes a long time and is prone to errors. This study aims to develop a classification system for toddler nutritional status using the K-Nearest Neighbors (k-NN). The data used was 100 samples with five parameters: gender, age, weight, height, and upper arm circumference. The classification process was carried out with variations in the ratio of training and testing data (90:10, 80:20, 70:30, 60:40), as well as the k value and distance calculation method (Euclidean, Manhattan, Chebyshev, Mahalanobis). The results showed that the best combination was obtained at a ratio of 90:10 and a k value = 9 with the Mahalanobis Distance method, which achieved the highest accuracy of 85.7%. This study proves that the K-NN method is effective in helping to classify nutritional status digitally and more efficiently.

Downloads

Download data is not yet available.

References

[1] W. Wahyudi, “Optimasi Klasifikasi Status Gizi Balita Berdasarkan Indeks Antropometri Menggunakan Algoritma C4.5 Adaboost Classification,” Jurnal Ilmiah Komputerisasi Akuntansi, vol. 12, no. 2, 2019.

[2] E. Ramon, A. Nazir, N. Novriyanto, Y. Yusra, and L. Oktavia, “Klasifikasi Status Gizi Bayi Posyandu Kecamatan Bangun Purba Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 2, 2022, doi: 10.47080/simika.v5i2.2185.

[3] Kementrian Kesehatan RI Direktorat Jendral Bina Gizi dan Kesehatan Ibu Tentang Standar Antropometri Penilaian Status Gizi dan Anak, “Keputusan Menteri Kesehatan Republik Indonesia Nomor:1995/MENKES/SK/XII/2010 Tentang Standar Antropometri Penilaian Status Gizi Anak,” 2011.

[4] H. Saleh, M. Faisal, and R. I. Musa, “Klasifikasi Status Gizi Balita Menggunakan Metode K-Nearest Neighbor,” Simtek : jurnal sistem informasi dan teknik komputer, vol. 4, no. 2, 2019, doi: 10.51876/simtek.v4i2.60.

[5] R. Shafira, Prajoko, and A. Pambudi, “Penilaian status gizi balita menggunakan metode K-Nearest Neighbor,” Technologia : Jurnal Ilmiah, vol. 14, no. 3, 2023, doi: 10.31602/tji.v14i3.11299.

[6] S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, 2022, doi: 10.30865/mib.v6i1.3312.

[7] V. Wulandari, W. J. Sari, Z. Alfian, L. Legito, and T. Arifianto, “Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 710–718, Apr. 2024, doi: 10.57152/malcom.v4i2.1229.

[8] G. P. Insany, I. Yustiana, and S. Rahmawati, “Penerapan KNN dan ANN pada klasifikasi status gizi balita berdasarkan indeks antropometri,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 2, 2023, doi: 10.37859/coscitech.v4i2.5079.

[9] S. D. Wahyuni and R. H. Kusumodestoni, “Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting,” Bulletin of Information Technology (BIT), vol. 5, no. 2, pp. 56–64, 2024, doi: 10.47065/bit.v5i2.1247.

[10] R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, 2022, doi: 10.30865/mib.v6i2.3566.

[11] A. Fitri, N. Azizah, and V. P. Ramadhan, “Komparasi Naïve Bayes dan K-NN Dalam Analisis Sentimen di Twitter Terhadap Kemenangan Paslon 02,” J-INTECH (Journal of Information and Technology), vol. 12, no. 2, pp. 228–237, 2024.

[12] A. Setiawan, “Perbandingan Penggunaan Jarak Manhattan, Jarak Euclid, dan Jarak Minkowski dalam Klasifikasi Menggunakan Metode KNN pada Data Iris,” Jurnal Sains dan Edukasi Sains, vol. 5, no. 1, 2022, doi: 10.24246/juses.v5i1p28-37.

[13] F. A. A. Putra, A. G. Sulaksono, L. T. Utomo, and A. R. Khamdani, “Klasifikasi Buah dan Sayur Menggunakan Fitur Ekstraksi HOG dan Metode KNN,” Jurnal Informatika Polinema, vol. 10, no. 1, 2023, doi: 10.33795/jip.v10i1.1433.

[14] N. Istiana and A. Mustafiril, “Perbandingan Metode Klasifikasi pada Data dengan Imbalance Class dan Missing Value,” Jurnal Informatika, vol. 10, no. 2, 2023, doi: 10.31294/inf.v10i2.15540.

[15] A. Fadlil, Herman, and D. Praseptian M, “K Nearest Neighbor Imputation Performance on Missing Value Data Graduate User Satisfaction,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, 2022, doi: 10.29207/resti.v6i4.4173.

[16] A. T. Akbar, N. Yudistira, and A. Ridok, “Identifikasi Gagal Ginjal Kronis dengan Mengimplementasikan Metode Support Vector Machine beserta K-Nearest Neighbour (SVM-KNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, 2023, doi: 10.25126/jtiik.20231026059.

[17] H. R. Ngemba et al., “Penerapan Algoritma K-Nearest Neighbor untuk Menentukan Potensi Ekspor Komoditas Pertanian di Provinsi Sulawesi Tengah,” Jurnal Teknologi dan Manajemen Informatika, vol. 9, no. 2, 2023, doi: 10.26905/jtmi.v9i2.10235.

[18] R. A. Safitri and R. Hidayati, “Komparasi Metode K-Nearest Neighbor dan Naïve Bayes untuk Mengklasifikasi Resiko Diabetes Di Posbindu Desa Bulupitu,” SMATIKA JURNAL, vol. 14, no. 02, pp. 297–303, Dec. 2024, doi: 10.32664/smatika.v14i02.1350.

[19] R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,” Techno.Com, vol. 20, no. 2, 2021, doi: 10.33633/tc.v20i2.4556.

[20] M. N. Kadhim, D. Al-Shammary, A. M. Mahdi, and A. Ibaida, “Feature selection based on Mahalanobis distance for early Parkinson disease classification,” Computer Methods and Programs in Biomedicine Update, vol. 7, pp. 1–14, 2025, doi: 10.1016/j.cmpbup.2025.100177.

[21] T. Kantacarini, D. E. Herwindiati, and J. Hendryli, “Kinerja Metode Mahalanobis Distance Yang Dibentuk Dari Dua Ukuran Pusat Dan Dua Dispersi Multivariat (Untuk Ukuran Similaritas Klasifikasi Image),” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 9, no. 1, 2021, doi: 10.24912/jiksi.v9i1.12667.

Downloads

Published

2025-04-21

Issue

Section

Articles