Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
Abstract
Keywords
Full Text:
PDFReferences
I. Mawardi, H. Hanif, J. Jennifar, and S. Safaruddin, “Penerapan Mesin Sortasi Dalam Upaya Efesiensi Proses Produksi Kopi Gayo Sebagai Produk Unggulan Daerah Aceh Tengah,” J. Bakti Masy. Indones., vol. 3, no. 2, pp. 476–485, 2021, doi: 10.24912/jbmi.v3i2.9400.
S. Abdoellah and D. Hartatri, F.S, “Analisis Kinerja dan Prospek Komoditas Kopi,” Anal. dan Opini Perkeb., vol. 2, no. 2, pp. 1–7, 2021.
A. de S. Silveira, A. C. T. Pinheiro, W. P. M. Ferreira, L. J. da Silva, J. L. dos S. Rufino, and N. S. Sakiyama, “Sensory analysis of specialty coffee from different environmental conditions in the region of Matas de Minas, Minas Gerais, Brazil TT - Análise sensorial dos cafés especiais da região das Matas de Minas cultivados em diferentes condições ambientais,” Rev. Ceres, vol. 63, no. 4, pp. 436–443, 2016, doi: https://doi.org/10.1590/0034-737X201663040002.
E. R. Arboleda, A. C. Fajardo, and R. P. Medina, “An image processing technique for coffee black beans identification,” 2018 IEEE Int. Conf. Innov. Res. Dev. ICIRD 2018, no. May, pp. 1–5, 2018, doi: 10.1109/ICIRD.2018.8376325.
A. Rahmawati, Y. Rianto, and D. Riana, “Deteksi Defect Coffee Pada Citra Tunggal Green Beans Menggunakan Metode Ensamble Decision Tree,” Techno.Com, vol. 20, no. 2, pp. 198–209, 2021, doi: 10.33633/tc.v20i2.4529.
M. Jumarlis, ; Mirfan, ; Abdul, and R. Manga, “Classification of coffee bean defects using gray-level co-occurrence matrix and k-nearest neighbor,” Ilk. J. Ilm., vol. 14, no. 1, pp. 1–9, 2022, [Online]. Available: http://dx.doi.org/10.33096/ilkom.v14i1.910.1-9
C. Pinto, J. Furukawa, H. Fukai, and S. Tamura, “Classification of Green coffee bean images basec on defect types using convolutional neural network (CNN),” in 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), 2017, pp. 1–5.
S. J. Chang and C. Y. Huang, “Deep learning model for the inspection of coffee bean defects,” Appl. Sci., vol. 11, no. 17, 2021, doi: 10.3390/app11178226.
R. Siddiqi, “Effectiveness of Transfer Learning and Fine Tuning in Automated Fruit Image Classification,” in Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, 2019, pp. 91–100. doi: 10.1145/3342999.3343002.
L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.
L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, 2021, doi: 10.1186/s40537-021-00444-8.
D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization of machine learning models for prediction of HIV / AIDS test results,” Int. J. Comput. Appl., no. September, 2021, doi: 10.1080/1206212X.2021.1974663.
W. Nugraha and A. Sasongko, “Hyperparameter Tuning pada Algoritma Klasifikasi denganGrid Search,” Sist. J. Sist. Inf., vol. 11, no. 2, pp. 391–401, 2022.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017. [Online]. Available: http://arxiv.org/abs/1704.04861
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.
K. Dong, C. Zhou, Y. Ruan, and Y. Li, “MobileNetV2 Model for Image Classification,” in Proceedings - 2020 2nd International Conference on Information Technology and Computer Application, ITCA 2020, 2020, pp. 476–480. doi: 10.1109/ITCA52113.2020.00106.
A. Faizin, A. Tri Arsanto, Moch. Lutfi, and A. Rochim Musa, “Deep Pre-Trained Model Menggunakan Arsitektur Densenet Untuk Identifikasi Penyakit Daun Padi,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 615–621, 2022, doi: 10.36040/jati.v6i2.5475.
Amir, Supri Bin Hj, and Bagas Prasetyo, ‘Comparison of Elliptic Envelope Method and Isolation Forest Method on Imbalance Dataset’, Jurnal Matematika, Statistika Dan Komputasi, 17.1 (2020), 42–49. doi: 10.20956/jmsk.v17i1.10899
DOI: https://doi.org/10.26905/jtmi.v9i1.10035
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Teknologi dan Manajemen Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index Copernicus International (ICI)
Tools
Jurnal Teknologi dan Manajemen Informatika
Fakultas Teknologi Informasi
University of Merdeka Malang
Alamat:
Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462
Email: [email protected]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.