Klasifikasi Jenis Rumah Adat Malaka Menggunakan Metode Convulational Neural Network (CNN)

Redemtus Nahak, Audyel Umbu Bura, Aprilio Demetrius De Araujo, Fransiskus Deni Un, Bartolomeus Wadan Ladopurab, Fitri Marisa, Anastasia L Maukar

Abstract


In Indonesia, there is a rich diversity of cultures, one of which is traditional houses. Traditional houses essentially have the potential to represent the way of life, culture, and local economy. Traditional houses in Indonesia, particularly in the Malaka region, are important cultural symbols that can be regarded as cultural icons in Malaka and Indonesia. They provide a historical perspective, heritage, and reflect the progress of society in a civilization. The Convolutional Neural Network (CNN) method is used in this research. In this study, the CNN algorithm is applied to classify traditional house objects. These traditional house objects are divided into two categories: Kolibein Traditional House and Laleik Traditional House. The objective of this research is to classify traditional houses in Malaka, namely Kolibein Traditional House and Laleik Traditional House, and also to determine the accuracy level of CNN classification results. The previously created model is tested using test data to assess its accuracy. The testing is conducted on 20 data points, with 10 data points in each respective class. The testing results show that the classification of Kolibein and Laleik traditional houses is error- free or very accurate. Based on the model developed for classifying Kolibein and Laleik traditional houses using the Convolutional Neural Network method, it is evident that this method is capable of producing accurate results. The obtained results indicate that the accuracy, based on the classification report using images of Kolibein and Laleik traditional houses, reaches 100%. Therefore, it can be concluded that the constructed CNN model has a high level of accuracy.


Keywords


Classification Method; Convolutional Neural; Traditional House;

Full Text:

PDF

References


M. Muhammad and N. Maradjado, Christian A, “Perancangan Aplikasi Pengenalan Rumah Adat Berbasis Android,” J. Elektron. Sist. Inf. dan Komput., vol. 4, no. 2, pp. 23–36, 2018 [Online].Available:http://jesik.web.id/index.php/jesik/article/view/84%0Ahttps://jesik.we b.id/index.php/jesik/article/download/84/60

R. Abdulhakim, Carudin, and B. Arif Dermawan, “Analisis dan Penerapan Algoritma Convolutional Neural Network untuk Klasifikasi Kendaraan Prioritas,” J. Sains dan Inform., vol. 7, no. 2, pp. 135–144, 2021, doi: 10.34128/jsi.v7i2.335.

P. D. Silitonga, D. Gultom, and I. Sri Morina, “Pengenalan Rumah Adat Sumatera Utara Menggunakan Augmented Rality Berbasis Android,” J. ICT Inf. Commun. Technol., vol. 19, no. 2, pp. 82–86, 2021, doi: 10.36054/jict-ikmi.v20i2.276.

F. H. Bria and G. A. M. Suartika, “Konsep Eko-Arsitektur pada Permukiman Adat Desa Lasaen, Kabupaten Malaka, Nusa Tenggara Timur,” RUANG-SPACE, J. Lingkung. Binaan (sp. J. Built Environ., vol. 9, no. 2, p. 125, 2022, doi: 10.24843/jrs.2022.v09.i02.p03.

S. Kehi, A. L. Son, and J. E. Simarmata, “Studi Etnomatematika: Makna Simbolik dan Konsep Matematika Pada Rumah Adat Hamanas Malaka,” Prisma, vol. 11, no. 2, p. 585, 2022, doi: 10.35194/jp.v11i2.2587.

Deni Yosef Nahak Berek and Frysa Wiriantari, ST, MT., “Proses Pembangunan Rumah Adat Uma Bei Kmeda Di Desa Lorotolus Kabupaten Malaka - Ntt,” J. Anala, vol. 7, no. 1, pp. 10–16, 2020, doi: 10.46650/anala.7.1.997.10-16.

A. Wahyuni and S. Pertiwi, “Etnomatematika dalam ragam hias melayu,” Math Didact. J. Pendidik. Mat., vol. 3, no. 2, pp. 113–118, 2017, doi: 10.33654/math.v3i2.61.

M. Wewe and H. Kau, “Etnomatika Bajawa: Kajian Simbol Budaya Bajawa Dalam Pembelajaran Matematika,” J. Ilm. Pendidik. Citra Bakti, vol. 6, no. 2, pp. 121–133, 2019,doi: 10.5281/zenodo.3551652.

S. Yoga, “Perubahan Sosial Budaya Masyarakat Indonesia Dan Perkembangan Teknologi Komunikasi,” J. Al-Bayan, vol. 24, no. 1, pp. 29–46, 2019, doi:10.22373/albayan.v24i1.3175.

S. Yulianti, A. Premana, and O. S. Bachri, “Penerapan Augmented Reality Sebagai Media Pembelajaran Materi Rumah Adat Indonesia Di Sekolah Dasar Kabupaten Brebes,” J. Ilm. Infokam, vol. 18, no. 2, pp. 79–86, 2022, doi: 10.53845/infokam.v18i2.323.

P. Studi, S. Komputer, U. Pembangunan, and P. Budi, “IMPLEMENTASI METODE CNN UNTUK KLASIFIKASI OBJEK,” vol. 7, no. 1, pp. 54–60, 2023.

Ayu Ratna Juwita, Tohirn Al Mudzakir, Adi Rizky Pratama, Purwani Husodo, and Rahmat Sulaiman, “Identifikasi Citra Batik Dengan Metode Convolutional Neural Network,” Buana Ilmu, vol. 6, no. 1, pp. 192–208, 2021, doi: 10.36805/bi.v6i1.1996.

M. Syahrul Maulana, B. Indarmawan Nugroho, and S. Surorejo, “Sistem Klasifikasi Jenis Kendaraan Melalui Teknik Olah Citra Digital,” J. Minfo Polgan, vol. 11, no. 2, pp. 89–99, 2022, doi: 10.33395/jmp.v11i2.11793.

B. Nugroho and E. Y. Puspaningrum, “Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, p. 533, 2021, doi:10.25126/jtiik.2021834515.

C. N. Ihsan, “Klasifikasi Data Radar Menggunakan Algoritma Convolutional Neural Network (CNN),” DoubleClick J. Comput. Inf. Technol., vol. 4, no. 2, p. 115, 2021, doi: 10.25273/doubleclick.v4i2.8188.




DOI: https://doi.org/10.26905/jtmi.v9i2.10352

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Teknologi dan Manajemen Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexing by:
width="150"

SINTA - Science and Technology Index

Index Copernicus International (ICI)

Tools

Turnitin

crossref

Mendeley

Jurnal Teknologi dan Manajemen Informatika 


Fakultas Teknologi Informasi
University of Merdeka Malang

Alamat:

Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462
Email: [email protected]


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.