Implementasi Fungsi Polinomial pada Algoritma Gradient Boosting Regressor: Studi Regresi pada Dataset Obat-Obatan Kadaluarsa Sebagai Material Antikorosi

Nicholaus Verdhy Putranto, Muhamad Akrom, Gustina Alfa Trinapradika


Corrosion is an electrochemical process between the metal surface and a corrosive environment that can lead to significant losses in various industries, especially in the oil and gas sector. Experimental studies are conducted to evaluate the performance of corrosion inhibitors and available resources. In this research, a machine learning (ML) approach is employed to assess the effectiveness of expired drug compounds as corrosion inhibitors. The primary challenge in machine learning is obtaining a highly accurate model to ensure that predictions are relevant to the properties of the tested materials. Therefore, the polynomial function is tested in the gradient-boosting regressor (GBR) algorithm to enhance the accuracy of the developed ML model. The results indicate that the implementation of the polynomial function in the GBR algorithm can improve the accuracy of the prediction model based on R2 and RMSE metrics.


Corrosion Inhibitor; Machine Learning; Polynomial Function; Gradient Boosting Regressor

Full Text:



T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” Npj Mater. Degrad., vol. 7, no. 1, Art. no. 1, Mar. 2023, doi:10.1038/s41529-023-00336-7.

M. Akrom, “INVESTIGATION OF NATURAL EXTRACTS AS GREEN CORROSION INHIBITORS IN STEEL USING DENSITY FUNCTIONAL THEORY,” J. Teori Dan Apl. Fis., vol. 10, no. 1, Art. no. 1, Jan. 2022, doi: 10.23960/jtaf.v10i1.2927.

M. A. Quraishi, D. S. Chauhan, and V. S. Saji, “Heterocyclic biomolecules as green corrosion inhibitors,” J. Mol. Liq., vol. 341, p. 117265, Nov. 2021, doi: 10.1016/j.molliq.2021.117265.

C. I. Ossai, “A Data-Driven Machine Learning Approach for Corrosion Risk Assessment—A Comparative Study,” Big Data Cogn. Comput., vol. 3, no. 2, Art. no. 2, Jun. 2019, doi: 10.3390/bdcc3020028.

T. L. P. Galvão, G. Novell-Leruth, A. Kuznetsova, J. Tedim, and J. R. B. Gomes, “Elucidating Structure–Property Relationships in Aluminum Alloy Corrosion Inhibitors by Machine Learning,” J. Phys. Chem. C, vol. 124, no. 10, pp. 5624–5635, Mar. 2020, doi: 10.1021/acs.jpcc.9b09538.

M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Appl. Surf. Sci., vol. 615, p. 156319, Apr. 2023, doi: 10.1016/j.apsusc.2022.156319.

P. D. N. H. S. M.T S. T., S. M.T S. T., and S. H. M.T S. T., Pengantar Inhibitor Korosi Alami. Deepublish, 2021.

M. A. Deyab, Q. Mohsen, and L. Guo, “Aesculus hippocastanum seeds extract as eco-friendly corrosion inhibitor for desalination plants: Experimental and theoretical studies,” J. Mol. Liq., vol. 361, p. 119594, Sep. 2022, doi: 10.1016/j.molliq.2022.119594.

M. Finšgar and J. Jackson, “Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review,” Corros. Sci., vol. 86, pp. 17–41, Sep. 2014, doi: 10.1016/j.corsci.2014.04.044.

M. Akrom et al., “Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi,” JoMMiT J. Multi Media Dan IT, vol. 7, no. 1, pp. 015–020, Jul. 2023, doi: 10.46961/jommit.v7i1.721.

S. Tanwer and S. K. Shukla, “Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: A review,” Curr. Res. Green Sustain. Chem., vol. 5, p. 100227, Jan. 2022, doi: 10.1016/j.crgsc.2021.100227.

M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Mater. Today Commun., vol. 35, p. 106402, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106402.

A. H. Alamri, “Application of machine learning to stress corrosion cracking risk assessment,” Egypt. J. Pet., vol. 31, no. 4, pp. 11–21, Dec. 2022, doi: 10.1016/j.ejpe.2022.09.001.

D. Xia, S. Song, J. Wang, J. Shi, H. Bi, and Z. Gao, “Determination of corrosion types from electrochemical noise by phase space reconstruction theory,” Electrochem. Commun., vol. 15, no. 1, pp. 88–92, Feb. 2012, doi: 10.1016/j.elecom.2011.11.032.

L. Yan, Y. Diao, Z. Lang, and K. Gao, “Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach,” Sci. Technol. Adv. Mater., vol. 21, no. 1, pp. 359–370, Jan. 2020, doi: 10.1080/14686996.2020.1746196.

Y. Diao, L. Yan, and K. Gao, “Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features,” Mater. Des., vol. 198, p. 109326, Jan. 2021, doi: 10.1016/j.matdes.2020.109326.

M. Akrom and T. Sutojo, “Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors,” Eksergi, vol. 20, no. 2, Art. no. 2, Jul. 2023, doi: 10.31315/e.v20i2.9864.

S. Budi, M. Akrom, G. A. Trisnapradika, T. Sutojo, and W. A. E. Prabowo, “Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets,” Sci. J. Inform., vol. 10, no. 2, Art. no. 2, May 2023, doi:10.15294/sji.v10i2.43929.

C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int. J. Mol. Sci., vol. 23, no. 9, Art. no. 9, Jan. 2022, doi:10.3390/ijms23095086.

H. D. Panduwinata, S. Suyitno, and M. N. Huda, “Model Regresi Weibull Pada Data Kontinu yang Diklasifikasikan,” EKSPONENSIAL, vol. 13, no. 2, Art. no. 2, Nov. 2022.

S. Bates, T. Hastie, and R. Tibshirani, “Cross-Validation: What Does It Estimate and How Well Does It Do It?,” J. Am. Stat. Assoc., vol. 0, no. 0, pp. 1–12, Apr. 2023, doi: 10.1080/01621459.2023.2197686.

J. J. Eertink, M. W. Heymans, G. J. C. Zwezerijnen, J. M. Zijlstra, H. C. W. de Vet, and R. Boellaard, “External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients,” EJNMMI Res., vol. 12, no. 1, p. 58, Sep. 2022, doi:10.1186/s13550-022-00931-w.

Y. Ji et al., “Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data,” Npj Mater. Degrad., vol. 6, no. 1, Art. no. 1, Oct. 2022, doi: 10.1038/s41529-022-00295-5.

V. V. Ramalingam and P. Ramasamy, “Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function,” Trans. Indian Inst. Met., vol. 70, no. 10, pp. 2575–2589, Dec. 2017, doi: 10.1007/s12666-017-1110-1.

M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Comput. Theor. Chem., vol. 1229, p. 114307, Nov. 2023, doi: 10.1016/j.comptc.2023.114307.

M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results Chem., vol. 6, p. 101126, Dec. 2023, doi: 10.1016/j.rechem.2023.101126.

A. Bommert, T. Welchowski, M. Schmid, and J. Rahnenführer, “Benchmark of filter methods for feature selection in high-dimensional gene expression survival data,” Brief. Bioinform., vol. 23, no. 1, p. bbab354, Jan. 2022, doi: 10.1093/bib/bbab354.

U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection algorithm: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1060–1073, Apr. 2022, doi: 10.1016/j.jksuci.2019.06.012.

Putra et al., 2019. Study on building machine learning model to predict biodegradable-ready materials | AIP Conference Proceedings | AIP Publishing. Available:

M. Akrom, “DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor,” Sci. Tech J. Ilmu Pengetah. Dan Teknol., vol. 8, no. 1, Art. no. 1, Feb. 2022, doi:10.30738/st.vol8.no1.a11775.



  • There are currently no refbacks.

Copyright (c) 2023 Jurnal Teknologi dan Manajemen Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexing by:

SINTA - Science and Technology Index

Index Copernicus International (ICI)





Jurnal Teknologi dan Manajemen Informatika 

Fakultas Teknologi Informasi
University of Merdeka Malang


Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.