Implementasi Fungsi Polinomial pada Algoritma Gradient Boosting Regressor: Studi Regresi pada Dataset Obat-Obatan Kadaluarsa Sebagai Material Antikorosi
Abstract
Keywords
Full Text:
PDFReferences
T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” Npj Mater. Degrad., vol. 7, no. 1, Art. no. 1, Mar. 2023, doi:10.1038/s41529-023-00336-7.
M. Akrom, “INVESTIGATION OF NATURAL EXTRACTS AS GREEN CORROSION INHIBITORS IN STEEL USING DENSITY FUNCTIONAL THEORY,” J. Teori Dan Apl. Fis., vol. 10, no. 1, Art. no. 1, Jan. 2022, doi: 10.23960/jtaf.v10i1.2927.
M. A. Quraishi, D. S. Chauhan, and V. S. Saji, “Heterocyclic biomolecules as green corrosion inhibitors,” J. Mol. Liq., vol. 341, p. 117265, Nov. 2021, doi: 10.1016/j.molliq.2021.117265.
C. I. Ossai, “A Data-Driven Machine Learning Approach for Corrosion Risk Assessment—A Comparative Study,” Big Data Cogn. Comput., vol. 3, no. 2, Art. no. 2, Jun. 2019, doi: 10.3390/bdcc3020028.
T. L. P. Galvão, G. Novell-Leruth, A. Kuznetsova, J. Tedim, and J. R. B. Gomes, “Elucidating Structure–Property Relationships in Aluminum Alloy Corrosion Inhibitors by Machine Learning,” J. Phys. Chem. C, vol. 124, no. 10, pp. 5624–5635, Mar. 2020, doi: 10.1021/acs.jpcc.9b09538.
M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Appl. Surf. Sci., vol. 615, p. 156319, Apr. 2023, doi: 10.1016/j.apsusc.2022.156319.
P. D. N. H. S. M.T S. T., S. M.T S. T., and S. H. M.T S. T., Pengantar Inhibitor Korosi Alami. Deepublish, 2021.
M. A. Deyab, Q. Mohsen, and L. Guo, “Aesculus hippocastanum seeds extract as eco-friendly corrosion inhibitor for desalination plants: Experimental and theoretical studies,” J. Mol. Liq., vol. 361, p. 119594, Sep. 2022, doi: 10.1016/j.molliq.2022.119594.
M. Finšgar and J. Jackson, “Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review,” Corros. Sci., vol. 86, pp. 17–41, Sep. 2014, doi: 10.1016/j.corsci.2014.04.044.
M. Akrom et al., “Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi,” JoMMiT J. Multi Media Dan IT, vol. 7, no. 1, pp. 015–020, Jul. 2023, doi: 10.46961/jommit.v7i1.721.
S. Tanwer and S. K. Shukla, “Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: A review,” Curr. Res. Green Sustain. Chem., vol. 5, p. 100227, Jan. 2022, doi: 10.1016/j.crgsc.2021.100227.
M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Mater. Today Commun., vol. 35, p. 106402, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106402.
A. H. Alamri, “Application of machine learning to stress corrosion cracking risk assessment,” Egypt. J. Pet., vol. 31, no. 4, pp. 11–21, Dec. 2022, doi: 10.1016/j.ejpe.2022.09.001.
D. Xia, S. Song, J. Wang, J. Shi, H. Bi, and Z. Gao, “Determination of corrosion types from electrochemical noise by phase space reconstruction theory,” Electrochem. Commun., vol. 15, no. 1, pp. 88–92, Feb. 2012, doi: 10.1016/j.elecom.2011.11.032.
L. Yan, Y. Diao, Z. Lang, and K. Gao, “Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach,” Sci. Technol. Adv. Mater., vol. 21, no. 1, pp. 359–370, Jan. 2020, doi: 10.1080/14686996.2020.1746196.
Y. Diao, L. Yan, and K. Gao, “Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features,” Mater. Des., vol. 198, p. 109326, Jan. 2021, doi: 10.1016/j.matdes.2020.109326.
M. Akrom and T. Sutojo, “Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors,” Eksergi, vol. 20, no. 2, Art. no. 2, Jul. 2023, doi: 10.31315/e.v20i2.9864.
S. Budi, M. Akrom, G. A. Trisnapradika, T. Sutojo, and W. A. E. Prabowo, “Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets,” Sci. J. Inform., vol. 10, no. 2, Art. no. 2, May 2023, doi:10.15294/sji.v10i2.43929.
C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int. J. Mol. Sci., vol. 23, no. 9, Art. no. 9, Jan. 2022, doi:10.3390/ijms23095086.
H. D. Panduwinata, S. Suyitno, and M. N. Huda, “Model Regresi Weibull Pada Data Kontinu yang Diklasifikasikan,” EKSPONENSIAL, vol. 13, no. 2, Art. no. 2, Nov. 2022.
S. Bates, T. Hastie, and R. Tibshirani, “Cross-Validation: What Does It Estimate and How Well Does It Do It?,” J. Am. Stat. Assoc., vol. 0, no. 0, pp. 1–12, Apr. 2023, doi: 10.1080/01621459.2023.2197686.
J. J. Eertink, M. W. Heymans, G. J. C. Zwezerijnen, J. M. Zijlstra, H. C. W. de Vet, and R. Boellaard, “External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients,” EJNMMI Res., vol. 12, no. 1, p. 58, Sep. 2022, doi:10.1186/s13550-022-00931-w.
Y. Ji et al., “Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data,” Npj Mater. Degrad., vol. 6, no. 1, Art. no. 1, Oct. 2022, doi: 10.1038/s41529-022-00295-5.
V. V. Ramalingam and P. Ramasamy, “Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function,” Trans. Indian Inst. Met., vol. 70, no. 10, pp. 2575–2589, Dec. 2017, doi: 10.1007/s12666-017-1110-1.
M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Comput. Theor. Chem., vol. 1229, p. 114307, Nov. 2023, doi: 10.1016/j.comptc.2023.114307.
M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results Chem., vol. 6, p. 101126, Dec. 2023, doi: 10.1016/j.rechem.2023.101126.
A. Bommert, T. Welchowski, M. Schmid, and J. Rahnenführer, “Benchmark of filter methods for feature selection in high-dimensional gene expression survival data,” Brief. Bioinform., vol. 23, no. 1, p. bbab354, Jan. 2022, doi: 10.1093/bib/bbab354.
U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection algorithm: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1060–1073, Apr. 2022, doi: 10.1016/j.jksuci.2019.06.012.
Putra et al., 2019. Study on building machine learning model to predict biodegradable-ready materials | AIP Conference Proceedings | AIP Publishing. Available: https://pubs.aip.org/aip/acp/article-abstract/2088/1/060003/797803/Study-on-building-machine-learning-model-to
M. Akrom, “DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor,” Sci. Tech J. Ilmu Pengetah. Dan Teknol., vol. 8, no. 1, Art. no. 1, Feb. 2022, doi:10.30738/st.vol8.no1.a11775.
DOI: https://doi.org/10.26905/jtmi.v9i2.11192
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Teknologi dan Manajemen Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index Copernicus International (ICI)
Tools
Jurnal Teknologi dan Manajemen Informatika
Fakultas Teknologi Informasi
University of Merdeka Malang
Alamat:
Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462
Email: [email protected]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.