Enhancing Sales Prediction for MSMEs: A Comparative Analysis of Neural Network and Linear Regression Algorithms

Authors

DOI:

https://doi.org/10.26905/jtmi.v10i1.11875

Keywords:

Prediction, Sales, Neural Network, Linear Regression.

Abstract

The increasingly fierce competition in the Micro, Small, and Medium Enterprises (MSME) industry has made business actors predict sales to find out future sales predictions and prepare strategies to deal with market trends that will occur in the future. Most MSMEs still do not have a prediction system. So, to set sales targets each year, they always use manual estimates by reviewing the previous year's sales data. Therefore, this research aims to predict sales and analyze the error value of sales data forecasting so that it can provide recommendations for strategies to increase sales. This research will apply neural network and linear regression algorithms to predict sales from 2020 to 2022. Based on the results of method testing, the artificial neural network algorithm is more suitable for forecasting sales than the linear regression algorithm. The test results obtained an RMSE value of 40,070 in the neural network method using one hidden layer and an RMSE value of 66,998 derived from the feature selection T-test and iterative T-test with a minimum tolerance value of 0.05 in the linear regression method.

Author Biographies

Rahmad Taufiqih, Universitas Muhammadiyah Sdiaorjo

Department of Management Faculty of Business Law and Social Science Universitas Muhammadiyah Sidoarjo

Rita Ambarwati, Universitas Muhammadiyah Sdiaorjo

Department of Management Faculty of Business Law and Social Science Universitas Muhammadiyah Sidoarjo

References

Iriane, R. (2023). CLICK: Scientific Review of Informatics and Computers Application of Data Mining for Sales Prediction of Animal Food Products Using the K-Nearest Neighbor Method. Media Online, vol. 3, no. 5, pp. 509–515 [Online]. Available: https://djournals.com/klik.

T, k,. Wadhawa, M. (2016). Analysis and Comparison Study of Data Mining Algorithms Using Rapid Miner. Int. J. Comput. Sci. Eng. Appl, vol. 6, no. 1, pp. 9–21. doi: 10.5121/ijcsea.2016.6102.

Widiastuti, F., Murniati, W., Saikin. (2022). Application of Data Mining to Predict Sales of Woven Fabrics Using Linear Regression Case Study: Ud.Bintang Remawe Sukarare. J. Ilm. Tek. Mesin, Elektro, dan Komput, vol. 2, no. 1, pp. 27–39, 2022.

Nugroho, K., Hadi, W., Kurniawati., Herdian Bhakti, R. M. (2022). Designing Sales Prediction Model Using Neural Network Method. J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 153–160. doi: 10.46772/intech.v4i02.870.

Yasin, M. (2023). Comparison Of The Application Of Linear Regression Method Estimation Using Rapidminer And Ms. Excel. vol. 8, pp. 17–29.

Sebayang, W. B. (2022). Adolescent Childbirth with Asphyxia Neonatorum. J. Aisyah J. Ilmu Kesehat., vol. 7, no. 2, pp. 669–672. doi: 10.30604/jika.v7i2.1507.

Access, O., Sciences, C. (2023). Soil Ph Prediction Using Rapid Miner And Machine Learning Algorithms. no. 04, pp. 6503–6509.

Sunardi, S., Fadlil, A., Kusuma, N. M. P. (2023). Comparing Data Mining Classification for Online Fraud Victim Profile in Indonesia. INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 7, no. 1, pp. 1–17. doi: 10.29407/intensif.v7i1.18283.

Supendar, H., Rusdiansyah, R., Suharyanti, N., Tuslaela, T. (2023). Application of the Naïve Bayes Algorithm in Determining Sales Of The Month. SinkrOn, vol. 8, no. 2, pp. 873–879. doi: 10.33395/sinkron.v8i2.12293.

Minta, S., Suriani., Meutia, R. (2022). The Effect of Income and Population on Public Consumption in Aceh Province with Panel Data Regression. J. Ilm. Basis Ekon. dan Bisnis, vol. 1, no. 1, pp. 1–17. doi: 10.22373/jibes.v1i1.1577.

Adjie Setyadj, M., Faqih, A., Arie Wijaya, Y. (2023). Forecasting Rice Commodity Prices in East Kalimantan Using Neural Network Algorithm. JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 320–324. doi: 10.36040/jati.v7i1.6327.

Massaro, A., Maritati, V., Galiano, A. (2018). Data Mining Model Performance of Sales Predictive Algorithms Based on Rapidminer Workflows. Int. J. Comput. Sci. Inf. Technol., vol. 10, no. 3, pp. 39–56. doi: 10.5121/ijcsit.2018.10303.

Lahindah, L., Sudirman, I. D. (2023). Classification Approach To Predict Customer Decision Between Product Brands Based on Customer Profile and Transaction. J. Theor. Appl. Inf. Technol., vol. 101, no. 9, pp. 3362–3370.

Tiara, B. (2018). Sales Prediction Using Neural Network Algorithm: Case Study at PT Balaraja Food Makmur Abadi. Insa. Pembang. Sist. Inf. dan Komput. …, vol. 6, no. 1, [Online]. Available: https://ojs.ipem.ecampus.id/ojs_ipem/index.php/stmik-ipem/article/viewFile/93/10

Kovács, L., Ghous, H. (2020). Efficiency comparison of Python and RapidMiner. Multidiszcip. Tudományok, vol. 10, no. 3, pp. 212–220. doi: 10.35925/j.multi.2020.3.26.

Batubara, A. S., Dafitri, H., Faisal, I. (2022). Analysis Of Linear Regression And Trend Moment Methods In Predcting Sales Using MAPE. J. Sist. Inf. dan Ilmu Komput. Prima, vol. 6, no. 1, pp. 75–81.

Pradito, B., Purnia, D. S. (2022). Comparison of Linear Regression and Neural Network Algorithms for Predicting Currency Exchange Rates. EVOLUSI J. Sains dan Manaj., vol. 10, no. 2, pp. 64–71. doi: 10.31294/evolusi.v10i2.13284.

Ryantika, H. A., et al. (2023). Linear Regression Method Application To Predict Cimory Milk. vol. 7, no. 1, pp. 1–7.

Haryadi, D., Marini, D., Atmaja, U., Hakim, A. R. (2023). Regression Algorithm. vol. 1089, no. June, pp. 1–12.

Utomo, W. C., History, A., Utomo, C. (2023). Journal of Information Technology and Management Prediction of BBRI Stock Movement amid the Issue of 2023 Recession Threat with Machine Learning Approach. vol. 9, no. 1, pp. 20–27. [Online]. Available: http://http//jurnal.unmer.ac.id/index.php/jtmi.

Wahyudi, T., Arroufu, D. S. (2022). Implementation of Data Mining Prediction Delivery Time Using Linear Regression Algorithm. J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 84–92. doi: 10.37385/jaets.v4i1.918.

Sidabutar, M. M. (2023). Comparison Of Linear Regression , Neural Net , And Arima Methods For Sales Prediction Of Instrumentation And Control Products In Pt . Sarana Instrument. vol. 02, no. 8, pp. 1694–1705. doi: 10.59141/jrssem.v2i08.397.

Kurniawan, F., Miftachul, Y., Nugroho, F., Ikhlayel, M. (2023). Comparing neural network with linear regression for stock market prediction. vol. 7, no. 1, pp. 8–13.

Izzah, N., Mohd, A., Shafii, N. H., Fauzi, N. F., Nasir, D. S. (2023). Prediction of Future Stock Price Using Recurrent Neural Network. vol. 8, no. 2, pp. 103–111.

Ramadhan, V. P., Pamuji, F. Y. (2022). Comparative Analysis of Forecasting Algorithms in LQ45 Stock Price Prediction PT Bank Mandiri Sekuritas (BMRI). J. Teknol. dan Manaj. Inform., vol. 8, no. 1, pp. 39–45. doi: 10.26905/jtmi.v8i1.6092.

Saputra, M. J., Herdiansyah, M. I. (2022). Application of Naive Bayes in Predicting Sales and Inventory of Jumputan Fabric at Batiq Colet Shop Tuan Kentang Palembang. J. Mantik, vol. 6, no. 2, pp. 2502–2507.

Muliawan, A. (2023). Experiment Time Series Forcasting Using Machine Learning ( Case study : Stock Value Prediction ). pp. 834–839.

Jhon, F., Ahmad, A. S. (2023). The Effect of Marketing Mix on Consumer Purchase Interest in the Lapai Honey Donut Shop. J. Valuasi J. Ilm. Ilmu Manaj. dan Kewirausahaan, vol. 3, pp. 593–604.

Saputra, G. R., Roswaty, R. (2020). The Effect of 4P Marketing Mix on Retail Fertilizer Purchasing Decisions at Toko Tani Makmur Pagar Alam South Sumatra. J. Nas. Manaj. Pemasar. SDM, vol. 1, no. 2, pp. 32–45. doi: 10.47747/jnmpsdm.v1i2.125.

Citra, Y., Nurwahidah, S., Wrtiningsih, A., Belakang, L. (2023). Marketing mix of krupuk atum saleng beme business in sampar layang hamlet, pemanto village, empang sub-district. vol. 3, no. 1, pp. 62–71.

Sofiah, M., Ramadhani, S., Bi Rahmani, N. A. (2023). Analysis Of The Influence Of The 4p Marketing Mix (Product, Price, Promotion, And Place) On Purchasing Decisions In Micro, Small And Medium Enterprises (Umkm). J. Ris. Ekon. dan Bisnis, vol. 16, no. 2, p. 122. doi: 10.26623/jreb.v16i2.7288.

Ilmiah, J., Islam, E. (2020). 4P Marketing Mix Strategy in Determining the Source of Islamic Business Capital for Market Traders in Sidoarjo. J. Ilm. Ekon. Islam, vol. 6, no. 03, pp. 693–702 [Online]. Available: http://jurnal.stie-aas.ac.id/index.php/jie

Dihuma, L. R., Din, M., Lamusa, F. (2023). Marketing Mix (4P) on Coconut Oil Products ‘Lanarasa’ in Tambu Village, Balaesang District. vol. 2, no. 1.

Triyawan, A., Prastyaningsih, I., Pradhistya, M. (2023). The Effect of Islamic Marketing Mix (4P) on Consumer Loyalty Mangrove Corporation (Ummilovely). J. Sharia Econ., vol. 4, no. 1, pp. 29–52. doi: 10.22373/jose.v4i1.2517.

Sabila, N. (2021). Analysis Of Marketing Strategies In Small Businesses Rambak Crackers Dwi Djaya Kendal District In The Perspective Of Business Riyadhoh. Pap. Knowl. . Towar. a Media Hist. Doc., vol. 3, no. 2, p. 6.

Downloads

Published

2024-06-25

Issue

Section

Articles