Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy

Authors

  • Fandi Yulian Pamuji Universitas Dian Nuswantoro Semarang
  • Viry Puspaning Ramadhan Universitas Dian Nuswantoro Semarang

DOI:

https://doi.org/10.26905/jtmi.v7i1.5982

Keywords:

Data Mining, Penyakit Kutil, Immunotheraphy, Random Forest, Decision Tree,

Abstract

Menjaga kesehatan merupakan tugas pada diri kita sendiri sebagai manusia, dengan tubuh yang sehat kita dapat melakukan aktifitas dan produktifitas kita sehari-hari. Kesehatan adalah keadaan seimbang yang dinamis, dipengaruhi faktor genetik, lingkungan dan pola hidup sehari-hari seperti makan, minum, kerja, dan istirahat. Immunotherapy merupakan metode pengobatan untuk mengobati penyakit kanker kulit yang dimana metode ini meningkatkan sistem kekebalan tubuh untuk mengatasi penyakit kutil. Immunotherapy merupakan pengobatan efektif untuk penyakit kutil. Metode ini memiliki respon yang lebih baik membutuhkan lebih sedikit sesi, dan mampu mengobati kutil yang sudah lama. Berdasarkan hasil pengujian metode Random Forest dan Decision Tree terhadap prediksi keberhasilan pengobatan imunoterapi untuk penyakit kutil menggunakan bahasa Python, maka dapat diambil kesimpulan bahwa hasil pengujian metode Decision Tree masih terdapat prediksi yang tidak tepat dengan tingkat akurasi 84,4 % kemudian metode Random Forest prediksinya tepat dengan tingkat akurasi 85,5 %. Hasil pengujian tersebut menunjukkan bahwa metode Random Forest merupakan metode yang lebih unggul dibandingkan dengan metode Decision Tree.

References

Arifin, T., & Syalwah, S. (2020). Prediksi Keberhasilan Immunotherapy Pada Penyakit Kutil Dengan Menggunakan Algoritma Naïve Bayes. Jurnal Responsif, 2(1), 38–43.

Cahyanti, F. L. D., Gata, W., & Sarasati, F. (2021). Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit. Jurnal Ilmiah Universitas Batanghari Jambi, 21(1), 259. https://doi.org/10.33087/jiubj.v21i1.1189

Devella, S., Yohannes, Y., & Rahmawati, F. N. (2020). Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 310–320. https://doi.org/10.35957/jatisi.v7i2.289

Fazriansyah, A., Azis, M. A., & Yudhistira, Y. (2020). Analysis of Neural Network Classification Algorithm To Know the Success Level of Immunotherapy. Jurnal Techno Nusa Mandiri, 17(1), 57–62. https://doi.org/10.33480/techno.v17i1.1089

Fitriyani, F., & Arifin, T. (2020). Implementasi Greedy Forward Selection untuk Prediksi Metode Penyakit Kutil Menggunakan Decision Tree. JST (Jurnal Sains Dan Teknologi), 9(1), 76–85. https://doi.org/10.23887/jst-undiksha.v9i1.24896

Khozeimeh, F., Jabbari Azad, F., Mahboubi Oskouei, Y., Jafari, M., Tehranian, S., Alizadehsani, R., & Layegh, P. (2017). Intralesional immunotherapy compared to cryotherapy in the treatment of warts. International Journal of Dermatology, 56(4), 474–478. https://doi.org/10.1111/ijd.13535

Putra, J. L., & Raharjo, M. (2019). Penerapan Neural Network Dalam Menentukan Tingkat Keberhasilan Immunotherapy. IJCIT (Indonesian Journal on Computer and Information Technology), 4(2), 132–136. https://doi.org/10.31294/ijcit.v4i2.6242

Sa, H., Indriani, F., Nugrahadi, D. T., Yani, J. A., Banjarbaru, K., & Selatan, K. (2019). METODE NAIVE BAYES GAUSSIAN DALAM PEMILIHAN PENGOBATAN KUTIL ( IMMUNOTHERAPY DAN. 2, 24–36.

T. F. Efendi, R. Rahmadi, and Y. Prayudi, “Rancang Bangun Sistem Untuk Manajemen Barang Bukti Fisik dan Chain of Custody (CoC) pada Penyimpananan Laboratorium Forensika Digital,†J. Teknol. dan Manaj. Inform., vol. 6, no. 2, pp. 53–63, 2020, doi: 10.26905/jtmi.v6i2.4177.

Sutoyo, I. (2018). Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Jurnal Pilar Nusa Mandiri, 14(2), 217. https://doi.org/10.33480/pilar.v14i2.926

Downloads

Published

2021-07-29

Issue

Section

Articles