Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy
DOI:
https://doi.org/10.26905/jtmi.v7i1.5982Keywords:
Data Mining, Penyakit Kutil, Immunotheraphy, Random Forest, Decision Tree,Abstract
Menjaga kesehatan merupakan tugas pada diri kita sendiri sebagai manusia, dengan tubuh yang sehat kita dapat melakukan aktifitas dan produktifitas kita sehari-hari. Kesehatan adalah keadaan seimbang yang dinamis, dipengaruhi faktor genetik, lingkungan dan pola hidup sehari-hari seperti makan, minum, kerja, dan istirahat. Immunotherapy merupakan metode pengobatan untuk mengobati penyakit kanker kulit yang dimana metode ini meningkatkan sistem kekebalan tubuh untuk mengatasi penyakit kutil. Immunotherapy merupakan pengobatan efektif untuk penyakit kutil. Metode ini memiliki respon yang lebih baik membutuhkan lebih sedikit sesi, dan mampu mengobati kutil yang sudah lama. Berdasarkan hasil pengujian metode Random Forest dan Decision Tree terhadap prediksi keberhasilan pengobatan imunoterapi untuk penyakit kutil menggunakan bahasa Python, maka dapat diambil kesimpulan bahwa hasil pengujian metode Decision Tree masih terdapat prediksi yang tidak tepat dengan tingkat akurasi 84,4 % kemudian metode Random Forest prediksinya tepat dengan tingkat akurasi 85,5 %. Hasil pengujian tersebut menunjukkan bahwa metode Random Forest merupakan metode yang lebih unggul dibandingkan dengan metode Decision Tree.References
Arifin, T., & Syalwah, S. (2020). Prediksi Keberhasilan Immunotherapy Pada Penyakit Kutil Dengan Menggunakan Algoritma Naïve Bayes. Jurnal Responsif, 2(1), 38–43.
Cahyanti, F. L. D., Gata, W., & Sarasati, F. (2021). Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit. Jurnal Ilmiah Universitas Batanghari Jambi, 21(1), 259. https://doi.org/10.33087/jiubj.v21i1.1189
Devella, S., Yohannes, Y., & Rahmawati, F. N. (2020). Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 310–320. https://doi.org/10.35957/jatisi.v7i2.289
Fazriansyah, A., Azis, M. A., & Yudhistira, Y. (2020). Analysis of Neural Network Classification Algorithm To Know the Success Level of Immunotherapy. Jurnal Techno Nusa Mandiri, 17(1), 57–62. https://doi.org/10.33480/techno.v17i1.1089
Fitriyani, F., & Arifin, T. (2020). Implementasi Greedy Forward Selection untuk Prediksi Metode Penyakit Kutil Menggunakan Decision Tree. JST (Jurnal Sains Dan Teknologi), 9(1), 76–85. https://doi.org/10.23887/jst-undiksha.v9i1.24896
Khozeimeh, F., Jabbari Azad, F., Mahboubi Oskouei, Y., Jafari, M., Tehranian, S., Alizadehsani, R., & Layegh, P. (2017). Intralesional immunotherapy compared to cryotherapy in the treatment of warts. International Journal of Dermatology, 56(4), 474–478. https://doi.org/10.1111/ijd.13535
Putra, J. L., & Raharjo, M. (2019). Penerapan Neural Network Dalam Menentukan Tingkat Keberhasilan Immunotherapy. IJCIT (Indonesian Journal on Computer and Information Technology), 4(2), 132–136. https://doi.org/10.31294/ijcit.v4i2.6242
Sa, H., Indriani, F., Nugrahadi, D. T., Yani, J. A., Banjarbaru, K., & Selatan, K. (2019). METODE NAIVE BAYES GAUSSIAN DALAM PEMILIHAN PENGOBATAN KUTIL ( IMMUNOTHERAPY DAN. 2, 24–36.
T. F. Efendi, R. Rahmadi, and Y. Prayudi, “Rancang Bangun Sistem Untuk Manajemen Barang Bukti Fisik dan Chain of Custody (CoC) pada Penyimpananan Laboratorium Forensika Digital,†J. Teknol. dan Manaj. Inform., vol. 6, no. 2, pp. 53–63, 2020, doi: 10.26905/jtmi.v6i2.4177.
Sutoyo, I. (2018). Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Jurnal Pilar Nusa Mandiri, 14(2), 217. https://doi.org/10.33480/pilar.v14i2.926
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
(1)Â Copyright of the published articles will be transferred to the journal as the publisher of the manuscripts. Therefore, the author confirms that the copyright has been managed by the journal.
(2) Publisher of JTMI: Jurnal Teknologi dan Manajemen Informatika is University of Merdeka Malang.
(3) The copyright follows Creative Commons Attribution–ShareAlike License (CC BY SA): This license allows to Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material, for any purpose, even commercially.