Analisis Perbandingan Algoritma Forecasting dalam Prediksi Harga Saham LQ45 PT Bank Mandiri Sekuritas (BMRI)

Viry Puspaning Ramadhan, Fandi Yulian Pamuji


Economic development in Indonesia has slowed in recent years. This resulted in the movement of the index for several stocks listed on BEIm, especially LQ45 which also experienced increases and decreases. Therefore, it is necessary to analyze stock price movements so that the results of the analysis can be used by investors to make investment decisions. This study will apply several Forecasting algorithms such as Linear Regression and Neural Network to predict the stock price of LQ45 in the case study of Bank Mandiri Sekuritas (BMRI). By using four attributes, namely open, high, and low values as predictors and close as a class, this study focuses on determining the accuracy value, namely Root Mean Squared Error (RMSE) by optimizing parameter values. The test results obtained an RMSE value of 0.034 on the Neural Network method with the addition of a hidden layer and an RMSE value of 0.052 on the Linear Regression method with M5 Prime and Greedy Feature Selection with a min-tolerance value of 0.05.


Forecasting; Stock Price; Linear Regression; Neural Network;

Full Text:



W. Y. Rusyida and V. Y. Pratama, “Prediksi Harga Saham Garuda Indonesia di Tengah Pandemi Covid-19 Menggunakan Metode ARIMA,” Sq. J. Math. Math. Educ., vol. 2, no. 1, p. 73, 2020, doi: 10.21580/square.2020.2.1.5626.

A. Izzah and R. Widyastuti, “Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 141–150, 2017, doi: 10.22219/kinetik.v2i3.268.

F. Fatkhurin and S. Sudaryanto, “Aplikasi Prediksi Harga Saham Menggunakan Metode Simple Moving Averages Pada Bursa Efek Indonesia,” JOINS (Journal Inf. …, vol. 02, no. 02, pp. 144–155, 2017, [Online]. Available:

D. T. Anggraeni, “Forecasting Harga Saham Menggunakan Metode Simple Moving Average Dan Web Scrapping,” J. Ilm. Matrik, vol. 21, no. 3, pp. 234–241, 2019, doi: 10.33557/jurnalmatrik.v21i3.726.

I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison of Data Mining Algorithm For Forecasting Bitccoin Crypto Currency Trends,” J. Tek. Inform., vol. 3, no. 2, pp. 245–248, 2022, doi: 10.20884/1.jutif.2022.3.2.194.

E. D. Y. Suprianto, “Penerapan jaringan syaraf tiruan untuk memprediksi harga saham,” 2004.

B. Y. Pandji, I. Indwiarti, and A. A. Rohmawati, “Perbandingan Prediksi Harga Saham dengan model ARIMA dan Artificial Neural Network,” Indones. J. Comput., vol. 4, no. 2, pp. 189–198, 2019, doi: 10.21108/indojc.2019.4.2.344.

R. F. T. Wulandari and D. Anubhakti, “Implementasi Algoritma Support Vector Machine (Svm) Dalam Memprediksi Harga Saham Pt. Garuda Indonesia Tbk,” IDEALIS Indones. J. Inf. Syst., vol. 4, no. 2, pp. 250–256, 2021, doi: 10.36080/idealis.v4i2.2847.

A. K. Zyen and R. H. Kusumodestoni, “Pengembangan Model Prediksi Harga Saham Berbasis Neural Network,” J. DISPROTEK, vol. 7, no. 1, pp. 74–83, 2016.

A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.



  • There are currently no refbacks.

Copyright (c) 2022 Jurnal Teknologi dan Manajemen Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ndexing by

SINTA - Science and Technology Index

Index Copernicus International (ICI)





Jurnal Teknologi dan Manajemen Informatika 

Fakultas Teknologi Informasi
University of Merdeka Malang


Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.