Implementasi Algoritma K-Means untuk Menentukan Persediaan Barang pada Poultry Shop
DOI:
https://doi.org/10.26905/jtmi.v7i2.6377Keywords:
Data Mining, Clustering, K-Means, Sale, Goods.Abstract
Maintaining inventory so that the goods do not get empty is one of the ways to maintain customer satisfaction. To do this, company management must be able to analyze which items are selling well and which items are not selling well, especially in the sales department. It is not easy to CV. Muria PS because it has a large number of items, so it takes a little computational technique to simplify the problem. The K-Means clustering algorithm was chosen to solve this problem because it can group the products sold and still available into several clusters. Of the three clusters formed, cluster 1 consists of two items, cluster 2 consists of 9 items, and the remaining 25 items are included in cluster 3. From these results, CV management can take advantage of this. Muria PS to increase inventory stock and sales strategy.References
P. P. Putra and A. S. Chan, “Pengembangan Aplikasi Perhitungan Prediksi Stock Motor Menggunakan Algoritma C 4.5 Sebagai Bagian dari Sistem Pengambilan Keputusan (Studi Kasus di Saudara Motor),†INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 24, 2018, doi: 10.35314/isi.v3i1.296.
B. M. Metisen and H. L. Sari, “Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila,†J. Media Infotama, vol. 11, no. 2, pp. 110–118, 2015.
K. Kusrini, “Grouping of Retail Items by Using K-Means Clustering,†Procedia Comput. Sci., vol. 72, pp. 495–502, 2015, doi: 10.1016/j.procs.2015.12.131.
M. Imron, U. Hasanah, and B. Humaidi, “Analysis of Data Mining Using K-Means Clustering Algorithm for Product Grouping,†IJIIS Int. J. Informatics Inf. Syst., vol. 3, no. 1, pp. 12–22, 2020, doi: 10.47738/ijiis.v3i1.3.
P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,†Innov. Res. Informatics, vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.
M. R. L. Iin Parlina, Agus Perdana Windarto, Anjar Wanto, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center,†Memanfaatkan Algoritm. K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Cent. Untuk Clust. Progr. Sdp, vol. 3, no. 1, pp. 87–93, 2018.
M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “An overview of clustering methods,†Intell. Data Anal., vol. 11, no. 6, pp. 583–605, 2007, doi: 10.3233/ida-2007-11602.
S. Kapil, M. Chawla, and M. D. Ansari, “On K-means data clustering algorithm with genetic algorithm,†2016, doi: 10.1109/PDGC.2016.7913145.
A. Agrawal and H. Gupta, “Global K-Means (GKM) Clustering Algorithm: A Survey,†Int. J. Comput. Appl., vol. 79, no. 2, pp. 20–24, 2013, doi: 10.5120/13713-1472.
mohamad jajuli nurul rohmawati, sofi defiyanti, “Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa,†Jitter 2015, vol. I, no. 2, pp. 62–68, 2015.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
(1)Â Copyright of the published articles will be transferred to the journal as the publisher of the manuscripts. Therefore, the author confirms that the copyright has been managed by the journal.
(2) Publisher of JTMI: Jurnal Teknologi dan Manajemen Informatika is University of Merdeka Malang.
(3) The copyright follows Creative Commons Attribution–ShareAlike License (CC BY SA): This license allows to Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material, for any purpose, even commercially.