Peramalan Stock Barang Dagangan Menggunakan Metode Single Exponential Smoothing

Saiful Nur Budiman

Abstract


Forecasting can be used in any field which requires a prediction of the existence of data in the future. Forecasting can be applied of them to help budget sales for the next period. Time series data obtained from sales data during a certain period of sales of a product can be used as the basis for forecasting. Excessive restocking of goods is not good for a store, because there is a possibility that the purchased goods will not sell well in the future. There needs to be a good control process for restocking goods, one of which can be used is to use a prediction of merchandise restocks using single exponential smoothing (SES). There are two kinds of sales data used, namely Koi Rice with a size of 5 kg and Bimoli Oil with a size of 900 ml. From the results of the SES calculation, a good alpha value for forecasting 5kg Koi Rice is 0.46. While the alpha value for 900ml Bimoli Oil is 0.704. The alpha value is obtained from the calculation of the smallest MSE value. The prediction results show that in the next period (15-30 September 2021) there will be a decrease in the number of sales of goods from the two products, so that shop owners can reduce their shopping allotment.

Keywords


Forecasting; Single exponential smoothing; Time series.

Full Text:

PDF

References


J. Heizer and B. Render, Manajemen Operasi : Manajemen Keberlangsungan dan Rantai Pasokan. Jakarta: Salemba Empat, 2015.

A. Nurlifa and S. Kusumadewi, "Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky," Jurnal INOVTEK Polbeng Seri Informatika, vol. 2, pp. 18-25, Juni 2017 2017.

H. Yulius and I. Yetti, "Peramalan Kebutuhan Manajemen Logistik Pada Usaha Depot Air Minum Isi Ulang Al-Fitrah," Jurnal Edik Informatika, vol. 1, pp. 5-14, 2017.

S. Nawangwulan and D. Angesti, "Analiss Time Series Metode Winter Jumlah Penderita Gastroenteritis Rawat Inap Berdasarkan Data Rekam Medis di RSUD Dr.Soetomo Surabaya," Jurnal Manajemen Kesehatan STIKES Yayasan RS. Dr. Soetomo, vol. 2, pp. 17-32, 2016.

H. Himawan and P. D. Silitonga, "Comparison Of Forecasting Accuracy Rate Of Exponential Smoothing Method on Admission of New Students," Journal of Critical Reviews, vol. 7, no. 2, 2020.

K. F. Pinontoan, "Pemodelan Single Exponential Smoothing (SES) Dan Integer Autoregressive (INAR) Pada Peramalan Permintaan Intermittent," Jurnal Sains dan Teknologi, vol. 2, pp. 141-146, 2018.

A. Lusiana and P. Yuliarty, "Penerapan Metode Peramalan (Forecasting) pada Permintaan Atap di PT X," Jurnal Teknik Industri ITN Malang, 2020.

S. M. Robial, "Perbandingan Model Statistik Pada Analisis Metode Peramalan Time Series (Studi Kasus: PT. Telekomunikasi Indonesia, TBK Kandatel Sukabumi)," Jurnal Ilmiah SANTIKA, vol. 8, 2018.

B. Saputro, Manajemen Penelitian Pengembangan (Research & Development) Bagi Penyusun Tesis dan Disertasi. Yogyakarta: Aswaja Pressindo, 2017.

Sugiyono, Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: PT. Alfabet, 2016.




DOI: https://doi.org/10.26905/jtmi.v7i2.6727

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Teknologi dan Manajemen Informatika



Indexing by:
width="150"

SINTA - Science and Technology Index

Index Copernicus International (ICI)

Tools

Turnitin

crossref

Mendeley

Jurnal Teknologi dan Manajemen Informatika 


Fakultas Teknologi Informasi
University of Merdeka Malang

Alamat:

Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462
Email: [email protected]


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.