Klasifikasi Tanaman Beringin (Ficus Bernjamina) berdasarkan Citra Daun Menggunakan Algoritma K-Nearest Neighbors
DOI:
https://doi.org/10.26905/jtmi.v7i2.6758Keywords:
Ficus, Classification, Digital Image, K-NN,Abstract
One of the problems faced when choosing a banyan, whether to be used as a shade plant, bonsai, or medicinal plant, is to identify the appropriate type of banyan. So research must be done to find out the desired type of banyan. One way that can be used to classify is with digital image processing technology, namely by extracting features or characteristics from digital images or images. The challenge is how to classify banyan plants based on leaf images using digital image processing. This study aims to design or design and compile a digital image processing program and the K-Nearest Neighbors (KNN) algorithm for the classification of the banyan species which can be used as a model for an automatic classification system using computer equipment. The results of the research on the process of testing the classification of ficus plants based on texture and shape characteristics on leaf images using the K-Nearest Neighbors algorithm can be concluded that the application has been successfully designed and built and can be used for the texture and shape feature extraction process and can be used for the classification process. From feature extraction, seven GLCM texture features are obtained, namely energy, entropy, contrast, homogeneity, IDM, variance, and dissimilarity, and 2 shape features, namely roundness, and compactness. The test results show a relatively low accuracy value of 56.25% with data on the number of images recognized according to the type of ficus as many as 18 and not recognized as many as 5 imagesReferences
https://ccrc.farmasi.ugm.ac.id, (7 November 2010). Beringin putih (Ficus benjamina L). diakses pada 20 Oktober 2020. dari http://ccrc.farmasi.ugm.ac.id/?page_id=412.
Rahmadewi, R., Efelina, V., Purwanti, E. (2018). Identifikasi Jenis Tumbuhan Menggunakan Citra Daun Berbasis Jaringan Saraf Tiruan (Artificial Neural Networks), Jurnal Media Elektro. VII(2), 38-43.
Wibowo, F., dan Harjoko, A. (2018). Klasifkasi Mutu Pepaya Berdasarkan Ciri Tekstur GLCM Menggunakan Jaringan Saraf Tiruan. Khasanah Informatika. 3(2), 100-104.
Adnan. (2011). Karakteristik sifat jeruk manis berdasarkan tingkat ketuaan. Prosiding seminar teknologi inovatif pascapanen pertanian. ISBN: 978-979-116-32-9. Bogor.
Ahmad, U., Tjahjohutomo, R., & Mardison. (2008). Perancangan dan Konstruksi Mesin Sortasi dan Pemutuan Buah Jeruk dengan Sensor kamera CCD. Junal Keteknikan Pertanian (JTEP). ISSN 0216-3365. Bogor.
Ahmad, U. (2002). Pengolahan Citra untuk Pemeriksaan Mutu Buah Mangga. Buletin Keteknikan Pertanian. Fakultas Teknologi Pertanian IPB. Bogor.
Arifin, A.D., Arieshanti, I., & Arifin, A.Z. (2012). Implementasi algoritma k-nearest neighbor yang berdasarkan one pass clustering untuk kategorisasi teks. ITS. Surabaya.
Sugiyanto, S, & Wibowo, F. (2015). Klasifikasi Tingkat Kematangan Buah Pepaya (Carica Papaya L) California (Callina-Ipb 9) Dalam Ruang Warna Hsv dan Algoritma KNearest Neighbors. Seminar NasionalHasil-Hasil Penelitian dan Pengabdian LPPM Universitas Muhammadiyah Purwokerto.
Ahmad, U. (2005). Pengolahan Citra Digital & Teknik Pemrogramannya. Graha Ilmu. Yogyakarta.
Kadir, A. & Susanto, A. (2013). Teori dan Aplikasi Pengolahan citra. Penerbit Andi. Yogyakarta.
Farsiah, L., Abidin, T.F., & Munadi, K. (2013). Klasifikasi gambar berwarna menggunakan knearest neghbor dan support vector machine. SNASTIKOM. Banda Aceh.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
(1)Â Copyright of the published articles will be transferred to the journal as the publisher of the manuscripts. Therefore, the author confirms that the copyright has been managed by the journal.
(2) Publisher of JTMI: Jurnal Teknologi dan Manajemen Informatika is University of Merdeka Malang.
(3) The copyright follows Creative Commons Attribution–ShareAlike License (CC BY SA): This license allows to Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material, for any purpose, even commercially.