Studi Literature Analisis Potensi Pasar Marketplace terhadap Penjualan

Authors

  • Sya Roni Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Cahyo Crysdian

DOI:

https://doi.org/10.26905/jtmi.v8i2.9055

Keywords:

KNN, C4.5, Marketplace, Produk

Abstract

Marketplace allows Customer to Customer (C2C) transactions between consumers without being bound by place and time. This change also occurs in human spending habits. So it becomes an opportunity for sellers to market their wares. In facing market competition, business people also need analysis to find out what products are selling best. However, there are many factors that affect the complexity of the marketplace in Indonesia. Then a classification-based simulation using KNN and C4.5 is needed, where the weight of each sales product group affects market potential so that it benefits sellers to choose which marketplace is suitable for the goods to be sold. So it can be concluded that (1). Factors that influence the complexity of marketplaces in Indonesia are price, number of sales, discounts, ratings and reviews. (2). The most optimal method used for analysis of sales market potential is K-Nearest Neighbor and C4.5.

References

Iprice, “Peta E-Commerce Indonesia - Q4 2021,†[Accessed Maret 2022]. [Online]. Available:, 2022. https://iprice.co.id/insights/mapofecommerce/

N. Pransiska, A. H. Mirza, Andri., and -, “Penerapan Data Mining Prediksi Penjualan Barang Elektronik Terlaris Menggunakan Algoritma Naïve Bayes ( Study Kasus : Planet Cash And Credit Cabang Muara Enim ),†Bina Darma Conf. Comput. Sci. e-ISSN 2685-2683p-ISSN 2685-2675, pp. 2157–2169, 2017.

M. A. Muzani, M. I. A. Sukri, S. N. Fauziah, A. Fatkhurohman, and D. Ariatmanto, “Data Mining Untuk Klasifikasi Produk Menggunakan Algoritma K-Nearest Neighbor Pada Toko Online,†Pros. SISFOTEK ISSN 2597-3584, vol. 5, no. 1, pp. 141–145, 2021, [Online]. Available: http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/273

N. Artisya and S. P. Saragih, “Prediction Tingkat Potensi Pembeli Pada Hari Special Di Toko Mitra Shopee,†J. COMASIE Predict. E-ISSN 2715-6265, vol. 06, no. 04, pp. 99–108, 2022, [Online]. Available: http://ejournal.upbatam.ac.id/index.php/comasiejournal

A. Astri, A. Fajriyati;, I. Putri;, Roghibah;, and Wa Ode Zuhayeni Madjida;, “Penerapan Algoritma K-Modes Clustering Dengan Validasi Davies Bouldin Index Pada Pengelompokkan Tingkat Minat Belanja Online Di Provinsi Daerah Istimewa Yogyakarta,†J. MSA ( Mat. dan Stat. serta Apl. ), vol. 9, no. 1, p. 24, 2021, doi: 10.24252/msa.v9i1.18555.

Mesri Silalahi, “Analisis Clustering Menggunakan Algoritma K-Means Terhadap Penjualan Produk Pada PT Batamas Niaga Jaya,†Comput. Based Inf. Syst. J. ISSN 2337-8794 | E- ISSN 2621-5292, vol. 02, pp. 20–35, 2018, [Online]. Available: http://ejournal.upbatam.ac.id/index.php/cbis

E. Yunianto and T. Taryadi, “Implementasi Fuzzy Decision Making Untuk Pemilihan Marketplace,†Smart Comp Jurnalnya Orang Pint. Komput. P-ISSN 2089-676X E-ISSN 2549-0796, vol. 11, no. 1, pp. 100–104, 2022, doi: 10.30591/smartcomp.v11i1.3253.

Karsito and W. Monika Sari, “Prediksi Potensi Penjualan Produk Delifrance Dengan Metode Naive Bayes Di Pt. Pangan Lestari,†J. Teknol. Pelita Bangsa ISSN 2407-3903, vol. 9, no. 1, pp. 67–78, 2018.

M. I. Islami and A. Prasetio, “Analisis Dan Prediksi Penjualan Pada Marketplace Berdasarkan Pendekatan Klasifikasi Dengan Metode Pohon Keputusan ( Studi Kasus Pada Data Katalog Dan Penjualan Tas Pria & Wanita Di Tokopedia Secara Nasional ),†e-Proceeding Manag. ISSN 2355-9357, vol. 5, no. 1, pp. 30–37, 2018.

Yahya and Mahpuz, “Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat,†Infotek J. Inform. dan Teknol. e-ISSN 2614-8773, vol. 2, no. 2, pp. 109–118, 2019.

S. Herdyansyah, E. H. Hermaliani, L. Kurniawati, and S. Rahayu, “Analisa Metode Association Rule Menggunakan Algoritma Fp-Growth Terhadap Data Penjualan (Study Kasus Toko Berkah),†J. KHATULISTIWA Inform. p-ISSN 2339-1928 I e-ISSN 2579-633X, vol. VIII, no. 2, pp. 2579–633, 2020, [Online]. Available: www.nusamandiri.ac.id

B. Song, W. Yan, T. Zhang, and -, “Cross-border e-commerce commodity risk assessment using text mining and fuzzy rule-based reasoning,†Adv. Eng. Informatics, vol. 40, no. January, pp. 69–80, 2019, doi: 10.1016/j.aei.2019.03.002.

R. V. Karthik and S. Ganapathy, “A fuzzy recommendation system for predicting the customers interests using sentiment analysis and ontology in e-commerce,†Appl. Soft Comput., vol. 108, p. 107396, 2021, doi: 10.1016/j.asoc.2021.107396.

D. K. Sharma, S. Lohana, S. Arora, A. Dixit, M. Tiwari, and T. Tiwari, “E-Commerce product comparison portal for classification of customer data based on data mining,†Mater. Today Proc., vol. 51, no. xxxx, pp. 166–171, 2021, doi: 10.1016/j.matpr.2021.05.068.

K. Wang, T. Zhang, T. Xue, Y. Lu, and S. G. Na, “E-commerce personalized recommendation analysis by deeply-learned clustering,†J. Vis. Commun. Image Represent., vol. 71, 2020, doi: 10.1016/j.jvcir.2019.102735.

H. Hwangbo, Y. S. Kim, K. J. Cha, and -, “Recommendation system development for fashion retail e-commerce,†Electron. Commer. Res. Appl., vol. 28, pp. 94–101, 2018, doi: 10.1016/j.elerap.2018.01.012.

um Md. S. Ichsan M, Jumhur ,HH, “Pengaruh Consumer Online Rating and Review Terhadap Minat Beli Konsumen Pada Marketplace Tokopedia Di Wilayah Dki Jakarta Effect of Consumer Online Rating and Review To Buying,†e-Proceeding Manag., vol. 5, no. 2, pp. 1828–1835, 2018.

N. Vilano and S. Budi, “Penerapan Kansei Engineering dalam Perbandingan Desain Aplikasi Mobile Marketplace di Indonesia,†J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 354–364, 2020, doi: 10.28932/jutisi.v6i2.2705.

Downloads

Published

2022-12-15