Image classification of leaf disease in corn plants (Zea Mays L.) using the MobileNetV2 method

Dellyan Achmad, Oddy Virgantara Putra, Dihin Muriyatmoko

Abstract


One of the main problems leading to low yields and possible crop failure in maize, a crop of great importance to human civilization, is that plant diseases are discovered and treated too late, leading to more severe diseases and even crop failure. Using photos taken from the Kaggle platform and some field shots, this research seeks to develop a classification system that can identify different types of diseases present on maize leaves. The disease types identified include Common Rust, Gray Leaf Spot, and Bacterial Leaf Blight. MobileNetV2 uses a Convolutional Neural Network (CNN) design to handle resource-intensive processes. To produce a lightweight model, this CNN uses separate corner shifts. The dataset for this study was taken from field shooting and the Kaggle platform. The study found that the MobileNetV2 model clarified objects very well with 93.01% accuracy. This discovery will help farmers find diseases on corn leaves (Zea Mays L.).

Keywords


classification, machine learning, Depthwise Separable Convolution, MobileNetV2

Full Text:

PDF

References


R. M. Pikahulan, “KONSEP ALIH TEKNOLOGI DALAM PENANAMAN MODAL DI INDONESIA BIDANG INDUSTRI OTOMOTIF.”

Yuwariyah et al. ‘Pengaruh pola tanam tumpangsari jagung dan kedelai terhadap pertumbuhan dan hasil jagung hibrida dan evaluasi tumpangsari di Arjasari Kabupaten Bandung’. 2022

W. Girsang, J. Purba, and S. Daulay, “UJI APLIKASI AGENS HAYATI TRIBAC MENGENDALIKAN PATHOGEN HAWAR DAUN (Helminthosporium sp.) TANAMAN JAGUNG (Zea mays L.),” Jurnal Ilmiah Pertanian, vol. 17, no. 1, pp. 51–59, Aug. 2020, doi: 10.31849/jip.v17i1.4614.

W. Wakman and Burhanuddin, “Pengelolaan Penyakit Prapanen Jagung,” Balai Penelitian Tanaman Serealia, pp. 305–335, 2007, [Online]. Available: http://balitsereal.litbang.pertanian.go.id/wp-content/uploads/2016/11/satuenam.pdf

L. O. S. Bande, G. HS, and Resman, “Intensitas Penyakit Yang Terdapat Pada Tanaman Jagung Dan Kacang Tanah Dalam Pola TumpangSari Di Pertanian Lahan Kering Kabupaten Muna Barat,” pp. 72–77, 2015.

J. Teknologi Informasi, R. Suhendra, and I. Juliwardi, “Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Support Vector Machine,” vol. 1, no. 1, pp. 29–35, 2022.

I. Pratama Putra and D. Alamsyah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network,” Jurnal Algoritme, vol. 2, no. 2, pp. 102–112, 2022.

R. Indraswari, R. Rokhana, and W. Herulambang, “Melanoma image classification based on MobileNetV2 network,” Procedia Comput Sci, vol. 197, pp. 198–207, 2021, doi: 10.1016/j.procs.2021.12.132.

M. Toğaçar, Z. Cömert, and B. Ergen, “Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks,” Chaos Solitons Fractals, vol. 144, p. 110714, Mar. 2021, doi: 10.1016/J.CHAOS.2021.110714.

E. I. Haksoro and A. Setiawan, “Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network,” Jurnal ELTIKOM, vol. 5, no. 2, pp. 81–91, 2021, doi: 10.31961/eltikom.v5i2.428.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.

G. Geetharamani and A. P. J., “Identification of plant leaf diseases using a nine-layer deep convolutional neural network,” Computers and Electrical Engineering, vol. 76, pp. 323–338, 2019, doi: 10.1016/j.compeleceng.2019.04.011.

K. Thenmozhi and U. Srinivasulu Reddy, “Crop pest classification based on deep convolutional neural network and transfer learning,” Comput Electron Agric, vol. 164, no. July, p. 104906, 2019, doi: 10.1016/j.compag.2019.104906.

D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, and A. Rangga, “Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan Cnn,” Journal of Science and Social Research, vol. 5, no. 2, p. 244, 2022, doi: 10.54314/jssr.v5i2.789.

D. Iswantoro and D. Handayani UN, “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Ilmiah Universitas Batanghari Jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.

T. D1Etterich, “Overfitting and Undercomputing in Machine Learning,” ACM Computing Surveys (CSUR), vol. 27, no. 3, pp. 326–327, 1995, doi: 10.1145/212094.212114.

K. Liao, M. R. Paulsen, J. F. Reid, B. C. Ni, and E. P. Bonifacio-Maghirang, “Corn Kernel Breakage Classification by Machine Vision Using a Neural Network Classifier,” Transactions of the ASAE, vol. 36, no. 6, pp. 1949–1953, 1993, doi: 10.13031/2013.28547.

Z. Huang, A. Qin, J. Lu, A. Menon, and J. Gao, “Grape Leaf Disease Detection and Classification Using Machine Learning,” Proceedings - IEEE Congress on Cybermatics: 2020 IEEE International Conferences on Internet of Things, iThings 2020, IEEE Green Computing and Communications, GreenCom 2020, IEEE Cyber, Physical and Social Computing, CPSCom 2020 and IEEE Smart Data, SmartD, no. March, pp. 870–877, 2020, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00150.

R. Mawarni, R. Wulaningrum, and R. Helilintar, “Implementasi Metode CNN Pada Klasifikasi Penyakit Jagung,” vol. 7, pp. 1256–1263, 2023.

T. Theodoridis and J. Kraemer, “Structural Analysis of Covariance on Health-Related Indicators in the Elderly at Home, Focusing on Subjective Health Perception”.

H. S. Kaduhm and H. M. Abduljabbar, “Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix,” Ibn AL-Haitham Journal For Pure and Applied Sciences, vol. 36, no. 1, pp. 113–122, 2023, doi: 10.30526/36.1.2894.




DOI: https://doi.org/10.26905/jisad.v2i2.14004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Information System and Application Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by

width="150"

Index Copernicus International (ICI)

Tools

Turnitin

crossref

Mendeley

Department of Information System, Faculty of Information Technology

Published by Universitas Merdeka Malang

Address: Jalan Terusan Dieng No. 57-59 Klojen, Pisang Candi, Sukun, Malang City, East Java, Indonesia, 65146
Phone: (+62341) 566462
Email[email protected]

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.