Analisis prediktif perubahan nilai profit berdasarkan klasifikasi pengguna pada usaha jasa logistik

Sephia Dwi Arma Putri, Anis Zubair

Abstract


The delivery of logistics services continues to experience a rapid increase in line with the high sales of goods through e-commerce. According to thepredetermined standards, each cargo expedition outlet is required to meet the monthly shipment achievement target (tonnage) to avoid fines and an increase in the target rate. This study aims to find out how to anticipate failure to achieve targets, so as to prevent additional operating expenses and profit instability. In this study, quantitative analysis was carried out using two algorithms. The Naïve Bayes algorithm is used to classify service user categories. The results showed that the industrial category contributed greatly to the delivery of cargo expeditions with a total tonnage percentage of 69.33%, while the remaining 30.67% was included in the individual category. Furthermore, the Multiple Linear Regression algorithm is used to predict profit values based on category classes. Predictions were made from October to December which resulted in an increase in profit for the individual category and a decrease in profit for the industrial category. Recommendations that can be made include royalty rewards for customers, brand awareness to attract new customers, as well as business cooperation with MSMEs and other business actors around them.



Keywords


logistics services, classification, regression, prediction

Full Text:

PDF

References


D. Hendarsyah, “E-Commerce Di Era Industri 4.0 Dan Society 5.0,” IQTISHADUNA J. Ilm. Ekon. Kita, vol. 8, no. 2, Art. no. 2, Dec. 2019, doi: 10.46367/iqtishaduna.v8i2.170.

D. Sudrajat, “Kapabilitas Dinamik, Kinerja Inovasi, dan Kinerja Perusahaan Jasa Logistik di Indonesia (Suatu Kerangka Penelitian),” Binus Bus. Rev., vol. 4, no. 2, Art. no. 2, Nov. 2013, doi: 10.21512/bbr.v4i2.1396.

F. Triagustina and L. Gani, “Usulan Time-Driven Activity Based Costing System, Customer Profitability Analysis dan Sistem Pengendalian Internal pada Perusahaan Logistik,” J. Ris. Akunt. Perpajak. JRAP, vol. 8, no. 01, Art. no. 01, Jun. 2021, doi: 10.35838/jrap.2021.008.01.01.

R. Kasengkang, “Analisis logistik (studi kasus pada PT. Remenia Satori Tepas-Kota Manado),” J. Berk. Ilm. Efisiensi, vol. 16, no. 1, Art. no. 1, Apr. 2016, Accessed: May 03, 2023. [Online]. Available: https://ejournal.unsrat.ac.id/v3/index.php/jbie/article/view/11801

R. Ananda, S. Sumarno, and I. Gunawan, “Prediksi Promosi Jabatan Karyawan JNE Pematangsiantar Dengan Algoritma C4.5,” J. Sist. Komput. Dan Inform. JSON, vol. 3, no. 3, Art. no. 3, Mar. 2022, doi: 10.30865/json.v3i3.3763.

V. Afifah and D. Setyantoro, “Rancangan Sistem Pemilihan dan Penetapan Harga dalam Proses Pengadaan Barang dan Jasa Logistik Berbasis Web,” Ikraith-Inform., vol. 5, no. 2, Art. no. 2, 2021.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform. Penelit. Bid. Komput. Sains Dan Pendidik. Inform., vol. 2, no. 2, Art. no. 2, Feb. 2017, doi: 10.22202/ei.2016.v2i2.1465.

N. Nendi and A. Wibowo, “Prediksi Jumlah Pengiriman Barang Menggunakan Kombinasi Metode Support Vector Regression, Algoritma Genetika dan Multivariate Adaptive Regression Splines,” J. Teknol. Inf. Dan Ilmu Komput., vol. 7, no. 6, Art. no. 6, Dec. 2020, doi: 10.25126/jtiik.2020722441.

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” J. Nas. Tek. Elektro Dan Teknol. Inf., vol. 8, no. 4, Art. no. 4, Nov. 2019.

M. Sholeh, “Penerapan Regresi Linear Ganda Untuk Memprediksi Hasil Nilai Kuesioner Mahasiswa Dengan Menggunakan Python,” J. Din. Inform., vol. 11, no. 1, Art. no. 1, Apr. 2022.

G. P. Kawani, “Implementasi Naive Bayes,” J. Inform. Inf. Syst. Softw. Eng. Appl. INISTA, vol. 1, no. 2, Art. no. 2, May 2019, doi: 10.20895/inista.v1i2.73.

D. Larassati, A. Zaidiah, and S. Afrizal, “Sistem Prediksi Penyakit Jantung Koroner Menggunakan Metode Naive Bayes,” JIPI J. Ilm. Penelit. Dan Pembelajaran Inform., vol. 7, no. 2, Art. no. 2, May 2022, doi: 10.29100/jipi.v7i2.2842.

M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” J. Appl. Inform. Comput., vol. 5, no. 2, Art. no. 2, Oct. 2021, doi: 10.30871/jaic.v5i2.3200.

S. Aisyah, S. Wahyuningsih, and F. Amijaya, “Peramalan jumlah titik panas Provinsi Kalimantan Timur menggunakan metode radial basis function neural network,” Jambura J. Probab. Stat., vol. 2, no. 2, Art. no. 2, Nov. 2021, doi: 10.34312/jjps.v2i2.10292.

M. R. Qisthiano, T. B. Kurniawan, E. S. Negara, and M. Akbar, “Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 3, Art. no. 3, Jul. 2021, doi: 10.30865/mib.v5i3.3030.

E. Siegel, Predictive Analytics. John Wiley & Sons, Inc., 2016.

A. T. Basuki and N. Prawoto, Analisis Regresi Dalam Penelitian Ekonomi & Bisnis. Rajawali Pers, 2015.




DOI: https://doi.org/10.26905/jisad.v1i1.9865

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Information System and Application Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by

width="150"

Index Copernicus International (ICI)

Tools

Turnitin

crossref

Mendeley

Department of Information System, Faculty of Information Technology

Published by Universitas Merdeka Malang

Address: Jalan Terusan Dieng No. 57-59 Klojen, Pisang Candi, Sukun, Malang City, East Java, Indonesia, 65146
Phone: (+62341) 566462
Email[email protected]

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.