Analisa Prediksi Varietas Buah Salak yang Sesuai dengan Lahan Daerah Kabupaten Banjarnegara Menggunakan Algoritma C45

Authors

  • Fitri Marisa Jurusan Teknik Informatika, Universitas Widyagama Malang
  • Anastasia L Maukar President University

DOI:

https://doi.org/10.26905/jtmi.v8i1.7521

Keywords:

C4.5 Algorithm, Classification Prediction, Agriculture, Snakefruit,

Abstract

Salak is a potential horticultural sector that is a leading commodity in Banjarnegara. Salak fruit varieties have fruit categories that have their advantages. Variants of salak fruit include ivory salak, granulated sugar salak, pondoh salak, and honey salak. Based on data released from the relevant government agencies, further research was carried out related to analyzing and conducting research to predict salak fruit varieties. This variety is suitable for land in every area in Banjarnegara with predictive analysis using the C4.5 algorithm. This method has been widely developed to classify and predict a case with a fairly high degree of accuracy. From this study, researchers hope that it can contribute farmers to determining the type of salak fruit that is most suitable for the land they own so that later the harvest obtained by farmers can be maximized

References

C. D. Patone, R. J. Kumaat, D. Mandeij, J. E. Pembangunan, F. Ekonomi, and D. Bisnis, “ANALISIS DAYA SAING EKSPOR SAWIT INDONESIA KE NEGARA TUJUAN EKSPOR TIONGKOK DAN INDIA.â€

P. Putu, S. Sugiani, D. H. Nursanyoto, D. J. Gizi, and P. Denpasar, “PERANAN GIZI DALAM PENUAAN DINI,†2011.

P. Ilmu dan Teknologi Pangan, F. Pertanian, and U. Yudharta Pasuruan, “KARAKTERISTIK MINUMAN PROBIOTIK FERMENTASI Lactobacillus casei DARI SARI BUAH SALAK Characteristic of Probiotic Drink Lactobacillus casei Fermentation from Snake Fruit Juice Cahyaning Rini Utami,†2018.

K. B. Kabupaten, B. Hidayatun, W. Roessali, and T. Ekowati, “Analisis Potensi Pengembangan Komoditas Salak Pondoh (Salaca edulis) di,†2018.

A. Mukminin and D. Riana, “21~31 Diterima Januari 16,†JURNAL INFORMATIKA, vol. 4, no. 1, 2017.

A. Hermawan, A. Ramadhan Sukma, R. Halfis, M. Ilmu Komputer, and S. Nusa Mandiri Jakarta, “Analisis Algoritma Klasifikasi C 4.5 Untuk Memprediksi Keberhasilan Immunotherapy Pada Penyakit Kutilâ€, doi: 10.31294/jtk.v4i2.

H. Amalia and E. Evicienna, “KOMPARASI METODE DATA MINING UNTUK PENENTUAN PROSES PERSALINAN IBU MELAHIRKAN,†Jurnal Sistem Informasi, vol. 13, no. 2, p. 103, Oct. 2017, doi: 10.21609/jsi.v13i2.545.

F. Marisa, A. L. Maukar, A. Farhan, E. A. Widodo, I. Sa, and R. T. L. Dasilva, “Pengukuran Tingkat Kematangan Kopi Arabika Menggunakan Algoritma K-Nearest Neighbour,†JIMP J. Inform. Merdeka Pasuruan, vol. 6, no. 3, pp. 4–8, 2022.

F. Marisa et al., “Rekomendasi Supplement Learning Resources dalam E-Learning berbasis Fuzzy AHP,†J. Teknol. dan Manaj. Inform., vol. 7, no. 2, pp. 77–85, 2021.

F. Marisa, B. A. Pribady, A. Desi, and A. L. Maukar, “Pendeteksian Daerah (Provinsi) Rawan Covid19 Dengan Metode Unsupervised Learning & Algoritma K-Medoids,†J. Teknol. Inf. dan Komun., vol. 12, no. 1, pp. 17–21, 2021.

Downloads

Published

2022-07-04

Issue

Section

Articles