Prediksi Pergerakan Saham BBRI ditengah Issue Ancaman Resesi 2023 dengan Pendekatan Machine Learning

Wahyu Cahyo Utomo

Abstract


The economic recovery after the Covid-19 pandemic is becoming increasingly challenging. According to several experts, a global recession is expected to occur in 2023, necessitating contributions from various fields of knowledge to address this situation. Machine learning is one method that can contribute by forecasting stock price movements. This research attempts to address the issues faced by traders in observing the potential movement of BBRI stock under the recession issue in 2023. Furthermore, this study uses linear regression and Bayesian regression methods to find the best model. By using six-month stock data of BBRI, with attributes such as open, high, low, and close as prediction targets, it is found that the model built using linear regression outperforms Bayesian regression. Based on the testing results, the linear regression model achieved a Dstat of 80% and an RMSE of 595.30, while the Bayesian regression model obtained a Dstat of 80% but a higher RMSE of 660.58. Based on the modeling results in this study, it is concluded that in the first semester of 2023, BBRI stock is still moving upward and is not affected by the recession issue in 2023.

Full Text:

PDF

References


D. Tambunan, “Investasi Saham di Masa Pandemi COVID-19,” Widya Cipta J. Sekr. dan Manaj., vol. 4, no. 2, pp. 117–123, 2020, doi: 10.31294/widyacipta.v4i2.8564.

M. Mulyana, L. Hidayat, and R. Puspitasari, “Mengukur Pengetahuan Investasi Para Mahasiswa Untuk Pengembangan Galeri Investasi Perguruan Tinggi,” JAS-PT J. Anal. Sist. Pendidik. Tinggi, vol. 3, no. 1, p. 31, 2019, doi: 10.36339/jaspt.v3i1.213.

I. Febrianti and N. Novita, “Pengujian Kekuatan Model Carhart Empat Faktor Terhadap Excess Return Saham Di Indonesia” Int. J. Appl. Bus. Penguji., vol. 1, no. 1, pp. 60–74, 2017, [Online]. Available: https://media.neliti.com/media/publications/544716-cosos-enterprise-risk-management-framewo-560db011.pdf.

“Analisis Pengaruh Earning Per Share, Debt To Equity Ratio Dan Return On Equity Terhadap Harga Saham Pt Unilever Indonesia Tbk.,” vol. 12, no. April, pp. 45–50, 2011.

I. G. A. Purnamawati and D. N. S. Werastuti, “Faktor Fundamental Ekonomi Makro Terhadap Harga Saham LQ45.,” J. Keuang. dan Perbank., vol. 17, no. 2, pp. 211–219, 2013, [Online]. Available: http://jurnal.unmer.ac.id/index.php/jkdp/article/view/740/402.

A. Sandra, S. annastasya Syach, V. Aulya, and D. Kustiawati, “Mempersiapkan Investasi untuk Hadapi Isu Resesi Ekonomi di Indonesia,” vol. 4, pp. 1707–1715, 2022.

Didikjunaidi and I. Mas’ud, “Penerapan Metode Forecasting Dalam Perencanaan Produksi Bakpia dengan Menggunakan Software Pom Guna Memenuhi Permintaan Konsumen,” J. Knowl. Ind. Eng., vol. 5, no. 3, pp. 121–128, 2018.

W. A. Marlina, S. Susiana, E. N, and F. A. Ahmad, “Forecasting technique using time sequence: model penentuan volume produksi Sanjai di UKM Rina Payakumbuh,” J. Manaj., vol. 9, no. 2, p. 187, 2018, doi: 10.32832/jm-uika.v9i2.1567.

C. Chazar and B. Erawan, “Machine Learning Diagnosis Kanker Payudara Menggunakan Algoritma Support Vector Machine,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 12, no. 1, pp. 67–80, 2020, doi: 10.37424/informasi.v12i1.48.

H. Abijono, P. Santoso, and N. L. Anggreini, “Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data,” J. Teknol. Terap. G-Tech, vol. 4, no. 2, pp. 315–318, 2021, doi: 10.33379/gtech.v4i2.635.

D. T. Anggraeni, “Forecasting Harga Saham Menggunakan Metode Simple Moving Average Dan Web Scrapping,” J. Ilm. Matrik, vol. 21, no. 3, pp. 234–241, 2019, doi: 10.33557/jurnalmatrik.v21i3.726.

M. U. Albab and W. S. Andriasari, “Analisis Teknikal dan Money Management dalam Pengambilan Keputusan Berinvestasi Saham Syariah di Bursa Efek Indonesia (Studi Kasus pada Perusahaan yang Terdaftar di Jakarta Islamic Index),” J. Manaj. Dan Bisnis Sriwij., vol. 20, no. 4, pp. 195–212, 2022, doi: 10.29259/jmbs.v20i4.18892.

R. Maulana and D. Kumalasari, “Analisis Dan Perbandingan Algoritma Data Mining Dalam Prediksi Harga Saham Ggrm,” J. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: https://finance.yahoo.com/quote/GGRM.J.

A. Izzah and R. Widyastuti, “Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 141–150, 2017, doi: 10.22219/kinetik.v2i3.268.

T. Indarwati, T. Irawati, and E. Rimawati, “Penggunaan Metode Linear Regression Untuk Prediksi Penjualan Smartphone,” J. Teknol. Inf. dan Komun., vol. 6, no. 2, pp. 2–7, 2019, doi: 10.30646/tikomsin.v6i2.369.

A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 41–50, 2021, doi: 10.35957/jatisi.v8i1.701.

C. Muth, Z. Oravecz, and J. Gabry, “User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan,” Quant. Methods Psychol., vol. 14, no. 2, pp. 99–119, 2018, doi: 10.20982/tqmp.14.2.p099.

L. R. Lloyd-Jones et al., “Improved polygenic prediction by Bayesian multiple regression on summary statistics,” Nat. Commun., vol. 10, no. 1, 2019, doi: 10.1038/s41467-019-12653-0.

Q. Pan, X. Qu, L. Liu, and D. Dias, “A sequential sparse polynomial chaos expansion using Bayesian regression for geotechnical reliability estimations,” Int. J. Numer. Anal. Methods Geomech., vol. 44, no. 6, pp. 874–889, 2020, doi: 10.1002/nag.3044.

A. Gelman, B. Goodrich, J. Gabry, and A. Vehtari, “R-squared for Bayesian Regression Models,” Am. Stat., vol. 73, no. 3, pp. 307–309, 2019, doi: 10.1080/00031305.2018.1549100.

A. Setiawan, “Analisis Volume Foreign Net Inflow terhadap Return Saham Bank Rakyat Indonesia dengan Volume Transaksi sebagai Variabel Moderasi Pasca,” 2022.

F. Hilman Hakim and R. Arnie, “Perbandingan Penentuan Buy dan Sell pada Trading Forex USDIDR dengan EURUSD Menggunakan Metode Supply and Demand dengan Algoritma K-Means,” Issn 2089-3787, 2019.

N. Mahmudah et al., “Bayesian Regresi Survival Pada Proses Kejadian Hiv / Aids Di Jawa Timur”




DOI: https://doi.org/10.26905/jtmi.v9i1.9135

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Teknologi dan Manajemen Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexing by:
width="150"

SINTA - Science and Technology Index

Index Copernicus International (ICI)

Tools

Turnitin

crossref

Mendeley

Jurnal Teknologi dan Manajemen Informatika 


Fakultas Teknologi Informasi
University of Merdeka Malang

Alamat:

Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia, 65146
(0341) 566462
Email: [email protected]


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.